Mathematical Formulation for Hydrodynamic Stability of Fluidic Jets

2002-01-0216

03/04/2002

Event
SAE 2002 World Congress & Exhibition
Authors Abstract
Content
1
The fluid spray exits the nozzle in the form of a stream, which decays rapidly to ligaments that break up into droplets. All these transitions occur in a very short time and region. This work provides a fundamental analysis of the jet stability in general form, but it is devoted particularly to fluidic jets. Such jets exist in different industrial applications; automobile windshield washer and diesel fuel injector sprays are good examples.
A computational analysis is developed that predicts the break up distance and velocity of the fluidic jets, which is one of the important factors that helps in prediction of the spray pattern and droplet strike location. Thus reduces number of the required prototypes and saves time and cost. Also, a parametric study is conducted to analyze the effect the jet breakup on the spray trajectory.
In this investigation, a successful approach is developed that combines an algebraic model, which predicts maximum exit velocity of fluidic devices, with the initial-problem of quasi-stationary stream and the linear theory of the hydrodynamic stability. The computational results have been correlated successfully versus the experimental tests.
Meta TagsDetails
DOI
https://doi.org/10.4271/2002-01-0216
Pages
8
Citation
Ghannam, M., "Mathematical Formulation for Hydrodynamic Stability of Fluidic Jets," SAE Technical Paper 2002-01-0216, 2002, https://doi.org/10.4271/2002-01-0216.
Additional Details
Publisher
Published
Mar 4, 2002
Product Code
2002-01-0216
Content Type
Technical Paper
Language
English