Mass Optimization of a Front Floor Reinforcement

2019-36-0149

01/13/2020

Features
Event
2019 SAE Brasil Congress & Exhibition
Authors Abstract
Content
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing. As the component geometry was already defined, the Size Optimization becomes the most adequate technique to be used, because it defines ideal component parameters, such as material values, cross-section dimensions and thicknesses, without changing its shape [1]. The Size Optimization methodology is a procedure in which certain parameters (Design Variables) need to be determined to achieve targeted performance (Objective Function) under given Design Constraints. For this instance, Design Variables are: thickness and material's mechanical properties; the Objective Function is to minimize the component's mass; and the Design Constraints are the structural performances in Side Impact Crash, Durability and Equivalent Stiffness tests.
Meta TagsDetails
DOI
https://doi.org/10.4271/2019-36-0149
Pages
10
Citation
Carvalho, G., Freitas de Araújo, D., and Rodrigues, R., "Mass Optimization of a Front Floor Reinforcement," SAE Technical Paper 2019-36-0149, 2020, https://doi.org/10.4271/2019-36-0149.
Additional Details
Publisher
Published
Jan 13, 2020
Product Code
2019-36-0149
Content Type
Technical Paper
Language
English