Sound source localization techniques in a car interior are hampered by the fact that the cavity usually is governed by a high number of (in)coherent sources and reflections.
In the acoustic near field, particle velocity based intensity probes have been demonstrated to be not susceptible to these reflections allowing the individual panel contributions of these (in)coherent sources to be accurately determined.
In the acoustic far field (spherical) beam forming techniques have been used outdoors in the free field, which analyze the directional resolution of a sound field incident on the array. Recently these techniques have also been applied inside cars, assuming that sound travels in a straight path from the source to the receivers.
However, there is quite some evidence that sound waves do not travel in a straight line. The Maritime Institute of Stetting in Poland made numerous 3 D sound intensity measurements demonstrating an erratic pattern of sound intensity streamlines [1], [2]
His approach was transferred from a lab to an actual car cabin upon request of a larger European car manufacturer.
At 900 positions inside the car the 3D intensity is measured with a 3 D sound intensity probes using three particle velocity sensors. Such a probe is not susceptible to the pressure-intensity index. Several speakers that are driven in sequence are used as controlled sound sources.
The results demonstrate that even with a single sound source, the 3D intensity streamlines are strongly bending, suggesting that far field techniques do not point towards the sound source.