Lumped Parameter Based Thermo-Physical Modeling of Electrified Vehicle Transmission System

2018-01-1195

04/03/2018

Event
WCX World Congress Experience
Authors Abstract
Content
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more efficient vehicle thermal management systems to best utilize the heat produced from burning fuel and improve driveline efficiency. The greatest part of the effort is directed toward the hybridization of automotive transmission systems. The efficiency and durability of hybrid powertrain depends on the heat generation in electric motors and their interactions among each other, ambient condition, the cooling system and the transmission component configuration. These increase the complexity of motor temperature prediction as well as the computational cost of running a conjugate heat-transfer based CFD analysis. In this paper, 1D physics based thermal model is developed which allows rapid and accurate component-wise temperature estimation of the electric motor during both steady-state and transient driving cycles. The complex and combined effect of heat convection, conduction and radiation have been considered while developing the energy conservation equations. The model represents a useful tool to design and analysis of a cooling system for the electric motors of the electrified transmission systems and thus to develop more sophisticated thermal control system strategies with variable coolant flow control devices. The critical temperature predictions from the proposed were within 10% of the real-vehicle based test data under different drive cycles.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-1195
Pages
6
Citation
Nahid, M., Rahman, R., Saha, J., Kapatral, S. et al., "Lumped Parameter Based Thermo-Physical Modeling of Electrified Vehicle Transmission System," SAE Technical Paper 2018-01-1195, 2018, https://doi.org/10.4271/2018-01-1195.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-1195
Content Type
Technical Paper
Language
English