The U.S. EPA initiated the Common Sense Initiative (CSI) to develop “Cleaner, Cheaper, Smarter” environmental policy and management practices. This paper addresses the application of life cycle design and assessment tools to automotive instrument panels (IP) as part of the Automotive Manufacturing Sector CSI pilot project investigation.
For this study, an “average IP” was modeled based on the instrument panels of three mid-sized U.S. car models: 1995 Chevrolet Lumina, 1996 Dodge Intrepid and 1996 Ford Taurus. This “average IP” consisted of seventeen different materials and weighed over 22 kg (49 lbs.).
A life cycle inventory analysis was conducted to evaluate the environmental burdens associated with materials production, manufacturing, use, and retirement. A thorough evaluation of solid waste production and energy consumption was completed and partial inventories of air emission and water effluent releases were also conducted. The distribution of these burdens across the life cycle stages is presented.
Multi-Criteria Matrices were used to identify and organize performance, environmental, legal, and cost requirements that influence the design and management of the IP system. This paper will demonstrate the conflicts that exist among the complex set of life cycle requirements for the IP and also highlight opportunities for environmental improvement of the IP.