Lattice-Boltzmann Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

2015-01-2084

06/15/2015

Event
SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures
Authors Abstract
Content
A Lattice-Boltzmann approach is used to simulate the aerodynamics of complex three-dimensional ice shapes on a NACA 23012 airfoil. The digitally produced high fidelity geometrical ice shapes were created using a novel laser scanning technique in the NASA Icing Research Tunnel. The geometrically fully resolved unsteady simulations are conducted on two ice shapes representing a roughness type and a horn type icing on the leading edge of the airfoil. Comparisons between simulation and experiment of lift, drag, and pitching moment as well as pressure distributions indicate overall a good qualitative agreement in capturing the aerodynamic degradation. Especially for the horn-type ice shape, the quantitative agreement is also mostly very good. Analysis of the flow structures indicates furthermore a good capturing of the three-dimensional separation behavior of the flow.
Meta TagsDetails
DOI
https://doi.org/10.4271/2015-01-2084
Pages
12
Citation
König, B., Fares, E., and Broeren, A., "Lattice-Boltzmann Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil," SAE Technical Paper 2015-01-2084, 2015, https://doi.org/10.4271/2015-01-2084.
Additional Details
Publisher
Published
Jun 15, 2015
Product Code
2015-01-2084
Content Type
Technical Paper
Language
English