Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control

2018-01-1181

04/03/2018

Event
WCX World Congress Experience
Authors Abstract
Content
An integrated adaptive cruise control (ACC) and cooperative ACC (CACC) was implemented and tested on three heavy-duty tractor-trailer trucks on a closed test track. The first truck was always in ACC mode, and the followers were in CACC mode using wireless vehicle-vehicle communication to augment their radar sensor data to enable safe and accurate vehicle following at short gaps. The fuel consumption for each truck in the CACC string was measured using the SAE J1321 procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb, demonstrating the effects of: inter-vehicle gaps (ranging from 3.0 s or 87 m to 0.14 s or 4 m, covering a much wider range than previously reported tests), cut-in and cut-out maneuvers by other vehicles, speed variations, the use of mismatched vehicles (standard trailers mixed with aerodynamic trailers with boat tails and side skirts), and the presence of a passenger vehicle ahead of the platoon.
The results showed that energy savings generally increased in a non-linear fashion as the gap was reduced. The middle truck saved the most fuel at gaps shorter than 12 m and the trailing truck saved the most at longer gaps, while lead truck saved the least at all gaps. The cut-in and cut-out maneuvers had only a marginal effect on fuel consumption even when repeated every two miles. The presence of passenger-vehicle traffic had a measurable impact. The fuel-consumption savings on the curves was less than on the straight sections.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-1181
Pages
20
Citation
McAuliffe, B., Lammert, M., Lu, X., Shladover, S. et al., "Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control," SAE Technical Paper 2018-01-1181, 2018, https://doi.org/10.4271/2018-01-1181.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-1181
Content Type
Technical Paper
Language
English