The Influence of Fluid Motion on Flame Kernel Development and Cyclic Variation in a Spark Ignition Engine

890991

04/01/1989

Event
40th Annual Earthmoving Industry Conference
Authors Abstract
Content
The effect of engine flow field characteristics on cycle-to-cycle variation in a methane fueled engine was examined. The rate of early flame development was correlated with the turbulence characteristics and the mean flow. This, in turn, was correlated with engine performance characteristics such as peak cylinder pressure. Drastically different flow field characteristics were achieved in the engine through the use of a prechamber having a variable inlet orifice diameter. Three combustion chamber geometries were examined: main chamber combustion without a prechamber, a prechamber with a 9 mm entrance orifice, and a prechamber with a 27 mm entrance orifice. Measurements of mean velocity and turbulence intensity were made in the region of the spark using laser Doppler velocimetry. The engine had a compression ratio of 5.1 and was operated at speeds of 300, 600, and 1200 rpm. The equivalence ratios were 0.7 and 0.8. A newly developed fiber optic spark plug probe was used to measure early flame development. It was found that the rate of early flame development increased with increasing turbulence intensity. It was determined that for lean operation, the development of the early flame is critical to subsequent combustion. Under most operating conditions a strong correlation was found between how quickly the flame grew to a diameter of 1 cm and the peak cylinder pressure and crank angle of peak cylinder pressure.
Meta TagsDetails
DOI
https://doi.org/10.4271/890991
Pages
16
Citation
Hall, M., "The Influence of Fluid Motion on Flame Kernel Development and Cyclic Variation in a Spark Ignition Engine," SAE Technical Paper 890991, 1989, https://doi.org/10.4271/890991.
Additional Details
Publisher
Published
Apr 1, 1989
Product Code
890991
Content Type
Technical Paper
Language
English