Improving Human Productivity in Bioregenerative Life Support Systems

972514

07/01/1997

Event
International Conference On Environmental Systems
Authors Abstract
Content
Bioregenerative Life Support Systems (BLSS) which supply food, water, and oxygen to humans in space by biological recycling need to be not only self-sustaining with nearly no re-supply from Earth, but also self-sustaining with nearly no crew or ground control time required for operation or maintenance, so that crew time can be devoted to the science and technology products of the mission. It is to meet this minimum crew and ground control time requirement that we are involved in the integration and adaptation of (1) robotics to replace most crew manual labor demands, and (2) intelligent monitoring and control systems to replace most crew cognitive demands for operations. An integral part of the robotic and intelligent monitoring and control subsystems is a wide area network (Internet or Intranet) information system and “shared space” collaborative “virtual team” environment which provides access to information on the equipment configurations and operations processes of the BLSS. This same capability is used to integrate the many different organizations involved in developing BLSS configurations and their operations processes. This information system is called the Advanced Life Support Science and Engineering Environment (ALSSEE).
Recent progress and results are described from developing the robotics, intelligent monitoring and control, and their common enabling information system for the NASA Bioregenerative Planetary Life Support Systems Test Complex (BIO-PLEX) and development for testing in the Lunar-Mars Life Support Test Project Phase ill (LMLSTP-3) in 1997. Emphasis is given to describing our intelligent system “agent” architecture which provides crew-centered adjustable autonomy from manual operation on one extreme to fully autonomous operations at the other extreme, all with the same software. This same architectural approach is being used to develop prototype adjustable autonomy intelligent systems for monitoring and control of Shuttle Orbiter subsystem upgrades such as RMS and OMS, and the Autonomous EVA Robotic Camera II.
Meta TagsDetails
DOI
https://doi.org/10.4271/972514
Pages
11
Citation
Erickson, J., "Improving Human Productivity in Bioregenerative Life Support Systems," SAE Technical Paper 972514, 1997, https://doi.org/10.4271/972514.
Additional Details
Publisher
Published
Jul 1, 1997
Product Code
972514
Content Type
Technical Paper
Language
English