Hydrodynamic and Flow Distribution Responses to Integrated River Regulation Measures in the Yangtze River’s Chizhou Reach

2025-99-0040

10/17/2025

Authors Abstract
Content
River regulation engineering is pivotal for harmonizing flood resilience, ecological integrity, and navigation efficiency in large alluvial systems, particularly under intensified hydrological stressors. The Yangtze River, Asia’s largest fluvial network, has experienced altered hydro-sedimentary regimes and exacerbated channel instability due to cascade reservoir operations, demanding adaptive strategies to stabilize dynamic reaches. This study investigates hydrodynamic and flow distribution responses to integrated regulation measures in the Chizhou Reach—a vulnerable alluvial segment characterized by severe bank erosion, sedimentation-induced flow imbalances, and constrained floodplains. Using a 1:500/1:100 scaled hydraulic model validated under flood and low-flow conditions, we assess synergistic effects of dredging, submerged dams, and flow-regulating groynes. Here we show that dredging the Wanchuanzhou right branch increases its flow diversion ratio by 1.71% (annual average flow) to 4.57% (bankfull flow), redistributing velocities (0.1–0.35 m/s reduction in dredged zones) and mitigating sedimentation. Submerged dams modulate cross-sectional flow areas: a –5 m crest dam in the Xinglongzhou right branch reduces discharge by 23.5%, while a –2 m dam in the Changshazhou left branch elevates the middle branch’s diversion ratio by 2.01%. Flow-regulating groynes enhance right-branch inflows by 0.54–0.75% through hydrodynamic redirection, balancing systemic flow partitioning. Contrasting prior studies focused on isolated interventions, our results reveal that multi-project integration addresses both localized instability and basin-scale hydraulic reconfiguration. These findings underscore the necessity of holistic engineering frameworks to mitigate cascading impacts in regulated rivers. By linking localized measures to basin-scale hydraulic stability, this study advances strategies for sustainable river management in sediment-laden, anthropogenically altered systems.
Meta TagsDetails
Pages
9
Citation
Gao, J., Feng, L., Ruan, J., Lu, L. et al., "Hydrodynamic and Flow Distribution Responses to Integrated River Regulation Measures in the Yangtze River’s Chizhou Reach," SAE Technical Paper 2025-99-0040, 2025, .
Additional Details
Publisher
Published
Oct 17
Product Code
2025-99-0040
Content Type
Technical Paper
Language
English