Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-01-0912

04/16/2007

Event
SAE World Congress & Exhibition
Authors Abstract
Content
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes.
Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays. Asymmetric combustion-induced flows alter the vorticity on the leeward side of the jet and lead to better entrainment and fuel-air mixing during the period of peak heat release. This leads to lower local equivalence ratio and lower soot production rates with swirl.
Meta TagsDetails
DOI
https://doi.org/10.4271/2007-01-0912
Pages
17
Citation
Bergin, M., Reitz, R., Oh, S., Miles, P. et al., "Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines," SAE Technical Paper 2007-01-0912, 2007, https://doi.org/10.4271/2007-01-0912.
Additional Details
Publisher
Published
Apr 16, 2007
Product Code
2007-01-0912
Content Type
Technical Paper
Language
English