Fluid Structure Interaction Simulations Applied to Automotive Aerodynamics

2015-01-1544

04/14/2015

Event
SAE 2015 World Congress & Exhibition
Authors Abstract
Content
One of the passive methods to reduce drag on the unshielded underbody of a passenger road vehicle is to use a vertical deflectors commonly called air dams or chin spoilers. These deflectors reduce the flow rate through the non-streamlined underbody and thus reduce the drag caused by underbody components protruding in to the high speed underbody flow. Air dams or chin spoilers have traditionally been manufactured from hard plastics which could break upon impact with a curb or any solid object on the road. To alleviate this failure mode vehicle manufacturers are resorting to using soft plastics which deflect and deform under aerodynamic loading or when hit against a solid object without breaking in most cases. This report is on predicting the deflection of soft chin spoiler under aerodynamic loads. The aerodynamic loads deflect the chin spoiler and the deflected chin spoiler changes the fluid pressure field resulting in a drag change. This fluid structure interaction (FSI) between chin spoiler and the air around it is simulated using coupled fluid and structural solvers. The local and global flow field changes due to FSI and their effect on vehicle drag is discussed. The FSI simulation method is explained and the results compared with test data.
Meta TagsDetails
DOI
https://doi.org/10.4271/2015-01-1544
Pages
5
Citation
Patil, S., Lietz, R., Woodiga, S., Ahn, H. et al., "Fluid Structure Interaction Simulations Applied to Automotive Aerodynamics," SAE Technical Paper 2015-01-1544, 2015, https://doi.org/10.4271/2015-01-1544.
Additional Details
Publisher
Published
Apr 14, 2015
Product Code
2015-01-1544
Content Type
Technical Paper
Language
English