Finite Element Modeling of Case-Hardened Metal as Multi-Laminated Structure

2018-01-1064

04/03/2018

Features
Event
WCX World Congress Experience
Authors Abstract
Content
Engineers have been interested in a thorough understanding of how a case-hardened part, consisting of soft substrate (or core) and hard surface, behaves under various types of loads, ranging from extremely destructive load to mild cyclic loads. The use of numeric simulation, such as well known finite element method, has made it much easier to achieve this. Throughout this investigation, the author proposes a methodology to treat such a case-hardened part as multi-laminated metal with a relative thin outer layer whose ultimate tensile strength may be several times as high as its inside core material. In the case studies to demonstrate the technique, a representative automotive component is subject to various loads due to not only the inertia of its own but also that imparted from heavy springs housed within it. A comparison was made between two approaches to account for the hardness transition between the hard layer and soft core. It is interesting to find the two approaches have yielded noticeably different outcomes. The most interesting finding provided by this study is that the failure due to mild cyclic loads may be a little different that from due to destructive loads. In particular, when it is subject to extremely high and non-cyclic loads, the failure usually occurs on the high-strength outer layer.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-1064
Pages
6
Citation
Yang, Z., "Finite Element Modeling of Case-Hardened Metal as Multi-Laminated Structure," SAE Technical Paper 2018-01-1064, 2018, https://doi.org/10.4271/2018-01-1064.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-1064
Content Type
Technical Paper
Language
English