Fanuc Family Inverse Kinematics Modeling, Validation and Visualization



SAE 2016 World Congress and Exhibition
Authors Abstract
Inverse kinematic solutions of six degree of freedom (DOF) robot manipulation is a challenging task due to complex kinematic structure and application conditions which affects and depend on the robot’s tool frame position, orientation and different possible configurations. The robot trajectory represents a series of connected points in three dimensional space. Each point is defined with its position and orientation related to the robot’s base frames or users teach pendant. The robot will move from point to point using the desired motion type (linear, arc, or joint). This motion requires inverse kinematic solution. This paper presents a detailed inverse kinematic solution for Fanuc 6R (Rotational) robot family using a geometrical method. Each joint angular position will be geometrically analyzed and all possible solutions will be included in the decision equations. The solution will be developed in a parametric manner to cover the complete Fanuc six DOF family. This result will be used for modeling and simulation purposes, even design of a new robotic systems and for understanding the robots physical limitations which is important for path planning. The validation and visualization of the developed equation were performed with robot mathematical model and actual Fanuc LR Mate 200ic robot. Complex teach pendant points were created with both robots which information was used to recreate the same points using equation derived in this paper. The tests show that the inverse kinematics solution is correct and very accurate.
Meta TagsDetails
Odeyinka, S., and Djuric, A., "Fanuc Family Inverse Kinematics Modeling, Validation and Visualization," SAE Technical Paper 2016-01-0335, 2016,
Additional Details
Apr 5, 2016
Product Code
Content Type
Technical Paper