Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems

2018-01-0343

04/03/2018

Event
WCX World Congress Experience
Authors Abstract
Content
Meeting Euro 6d NOx emission regulations lower than 80 mg/km for light duty diesel (60 mg/km gasoline) vehicles remains a challenge, especially during cold-start tests at which the selective catalyst reduction (SCR) system does not work because of low exhaust gas temperatures (light-off temperature around 200 °C). While several exhaust aftertreatment system (EATS) designs are suggested in literature, solutions with gaseous ammonia injections seem to be an efficient and cost-effective way to enhance the NOx abatement at low temperature. Compared to standard SCR systems using urea water solution (UWS) injection, gaseous NH3 systems allow an earlier injection, prevent deposit formation and increase the NH3 content density. However non-uniform ammonia mixture distribution upstream of the SCR catalyst remains an issue. These exhaust gas/ NH3 inhomogeneities lead to a non-optimal NOx reduction performance, resulting in higher than expected NOx emissions and/or ammonia slip. Thus, efficient mixers upstream of the SCR are crucial for the overall EATS performance. In the experimental study reported in this article, planar laser induced fluorescence (PLIF) is used to quantify mixing performance of four novel CFD optimized static mixers in an optically accessible flow bench. The variation of boundary conditions and the change of exhaust line configurations (e.g. w/wo DOC upstream, w/wo DPF downstream) show a major effect on the mixing process and subsequently the homogeneity of the ammonia-exhaust gas mixture (for example: drop in uniformity index from UI = 0.95 to UI = 0.60 for a blade mixer design). This points out the need to purposefully design and optimize static mixers for a specific exhaust line configuration.
Meta TagsDetails
DOI
https://doi.org/10.4271/2018-01-0343
Pages
13
Citation
Schiffmann, P., Lecompte, M., and Laget, O., "Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems," SAE Technical Paper 2018-01-0343, 2018, https://doi.org/10.4271/2018-01-0343.
Additional Details
Publisher
Published
Apr 3, 2018
Product Code
2018-01-0343
Content Type
Technical Paper
Language
English