Evaluating the Performance Improvement of Different Pneumatic Hybrid Boost Systems and Their Ability to Reduce Turbo-Lag

2015-01-1159

04/14/2015

Event
SAE 2015 World Congress & Exhibition
Authors Abstract
Content
The objective of the work reported in this paper was to identify how turbocharger response time (“turbo-lag”) is best managed using pneumatic hybrid technology. Initially methods to improve response time have been analysed and compared. Then the evaluation of the performance improvement is conducted using two techniques: engine brake torque response and vehicle acceleration, using the engine simulation code, GT-SUITE [1].
Three pneumatic hybrid boost systems have been considered: Intake Boost System (I), Intake Port Boost System (IP) and Exhaust Boost System (E). The three systems respectively integrated in a six-cylinder 7.25 l heavy-duty diesel engine for a city bus application have been modelled. When the engine load is increased from no load to full load at 1600 rpm, the development of brake torque has been compared and analysed. The findings show that all three systems significantly reduce the engine response time, with System I giving the fastest engine response.
The vehicle performance has been also considered. Systems I and IP have been integrated respectively into the bus model giving two different configurations. The acceleration capability of the two types of vehicle has been simulated. Both Systems I and IP significantly reduce the vehicle acceleration time by substantially reducing turbo-lag.
Meta TagsDetails
DOI
https://doi.org/10.4271/2015-01-1159
Pages
14
Citation
Bao, R., and Stobart, R., "Evaluating the Performance Improvement of Different Pneumatic Hybrid Boost Systems and Their Ability to Reduce Turbo-Lag," SAE Technical Paper 2015-01-1159, 2015, https://doi.org/10.4271/2015-01-1159.
Additional Details
Publisher
Published
Apr 14, 2015
Product Code
2015-01-1159
Content Type
Technical Paper
Language
English