Evaluation of the performance potential of an automotive conceptual design requires some initial quantitative estimate of numerous relevant parameters. Such parameters include the vehicle mass properties, frontal and plan areas, aero drag and lift coefficients, available horsepower and torque, and various tire characteristics such as the rolling resistance coefficient(s)…
A number of rolling resistance models have been advanced since Robert William Thomson first patented the pneumatic rubber tire in 1845, most of them developed in the twentieth century. Most early models only crudely approximate tire rolling resistance behavior over a limited range of operation, while the latest models overcome those limitations but often at the expense of extreme complexity requiring significant computer resources. No model extant seems well suited to the task of providing a methodology for the estimation of a tire’s rolling resistance “coefficient” that is simple to use yet accurate enough for modern conceptual design evaluation.
It is the intent of this paper to suggest a methodology by which this seeming deficiency may be rectified.