One of the challenges NASA faces today is developing an Advanced Life Support (ALS) system that will enable long duration space missions beyond low earth orbit (LEO). This ALS system must include a food processing subsystem capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food products from pre-packaged and re-supply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. However, designing, building, developing, and maintaining such a subsystem is bound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste, and other ESM parameters influence the selection of processing equipment and techniques. Several researchers have calculated ESM of select types of food processing equipment to compare ESM for individual food types; however, a complete survey of ESM parameters for currently available food processing unit operations has not been completed.
In order to direct NASA’s research and technology efforts related to the food subsystem, the technologies available on Earth for food processing, preservation, and packaging must be identified and the viability of these technologies must be assessed. Minimizing mass, volume, and energy consumption are important factors to be considered when locating available food processing equipment and evaluating feasibility for use in an ALS system. Once the ESM has been estimated for available equipment, modifications can be suggested to improve efficiency and reduce ESM. The objective of this study was to compile ESM-parameter information (mass, volume, and power) for currently available, small-scale food processing equipment and to provide average, high, and low ESM values for each class of equipment (hand-held and bench-top mixers, etc.) that performs the following unit operations: mixing, size reduction, heat transfer (heating and cooling), and extraction (water, oil, and juice). In this study, each piece of equipment was assumed to perform a single task, the power required for cooling was set equivalent to the power needed to operate the equipment, and the crew-time was not considered in the preliminary ESM estimates. An additional discussion on other parameters important to consider for ESM of the food system, including multi-functional equipment and power, is provided.