Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine

2014-01-1141

04/01/2014

Event
SAE 2014 World Congress & Exhibition
Authors Abstract
Content
Heat transfer losses are one of the largest loss contributions in a modern internal combustion engine. The aim of this study is to evaluate the contribution of the piston bowl type and swirl ratio to heat losses and performance. A commercial CFD tool is used to carry out simulations of four different piston bowl geometries, at three engine loads with two different swirl ratios at each load point. One of the geometries is used as a reference point, where CFD results are validated with engine test data. All other bowl geometries are scaled to the same compression ratio and make use of the same fuel injection, with a variation in the spray target between cases. The results show that the baseline case, which is of a conventional diesel bowl shape, provides the best emission performance, while a more open, tapered, lip-less combustion bowl is the most thermodynamically efficient. The results also show that the response of the flow field, due to swirl variations, is not the same for all piston configurations and, therefore, the effects of swirl on heat transfer are not the same for all piston geometries.
Meta TagsDetails
DOI
https://doi.org/10.4271/2014-01-1141
Pages
13
Citation
Fridriksson, H., Tuner, M., Andersson, O., Sunden, B. et al., "Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine," SAE Technical Paper 2014-01-1141, 2014, https://doi.org/10.4271/2014-01-1141.
Additional Details
Publisher
Published
Apr 1, 2014
Product Code
2014-01-1141
Content Type
Technical Paper
Language
English