Dynamic Simulation under Intermediate Strain Rates of Mechanical Components Made of an Elastomeric Matrix and a Metal Reinforcement

2013-01-0169

04/08/2013

Event
SAE 2013 World Congress & Exhibition
Authors Abstract
Content
This work studies the dynamic simulation of mechanical components under intermediate strain rates. The study is centered on components composed of an elastomeric material and a metal reinforcement. Two different constitutive models were proposed to simulate the elastomeric material dynamic behavior. The proposed models were the Maxwell and the Cowper & Symonds models. For the components' simulation, the material characteristics were obtained through a multivariable identification process based on the experimental data acquired from a dynamic material analysis (DMA). For the generalized Maxwell model the system frequency response was analyzed, and for the Cowper & Symonds model a finite element analysis was performed. It was found that the Cowper & Symonds model implementation by finite element analysis allows a good fit of the material properties but has a high computational cost. On the other hand, the Maxwell model implementation by frequency representation consists on a reduced order model with low computational cost to perform the simulation of simple mechanical components.
Meta TagsDetails
DOI
https://doi.org/10.4271/2013-01-0169
Pages
12
Citation
Ramirez, A., and Munoz, L., "Dynamic Simulation under Intermediate Strain Rates of Mechanical Components Made of an Elastomeric Matrix and a Metal Reinforcement," SAE Technical Paper 2013-01-0169, 2013, https://doi.org/10.4271/2013-01-0169.
Additional Details
Publisher
Published
Apr 8, 2013
Product Code
2013-01-0169
Content Type
Technical Paper
Language
English