Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb. While the cart is being stopped by two honeycomb blocks, the vehicle slides laterally from the cart with the far-side wheels sliding up the ramps, which generates the desired lateral roll rate. The vehicle near-side wheels slide onto a high-friction surface, which generates an additional strong roll moment around the vehicle center of gravity. To design the testing procedure, computational simulations were conducted to select values for several testing parameters, including ramp height, ramp length, ground surface friction, vehicle traveling speed, cart height and stopping distance to ensure desired roll rate and number of quarter turns. Three physical tests using three armored military vehicles were conducted using the procedure. All tests resulted in the desired 5 to 8 quarter-turns of the vehicle, and the instrumented tests showed repeatable initial roll rates. The tests demonstrated that the newly-designed rollover procedure is suitable for vehicles that are generally too large/heavy for other dynamic rollover methods, and may also be useful for lighter vehicles when a well-controlled, directly lateral roll is desired.