Determination of a Nonlinear, Unified and Robust Individual Cylinder Air Fuel Ratio Estimator

2000-01-0262

03/06/2000

Event
SAE 2000 World Congress
Authors Abstract
Content
The optimization of fuel efficiency and the minimization of the residual gas fraction require individual cylinder control of the amounts of inducted air mass and injected fuel mass. Determination of an individual cylinder air/fuel ratio (AFR) regulator is based on the measured AFR for each cylinder, using 4 proportional UEGO sensors. The innovative character of this study describes a unified and robust individual cylinder AFR estimator, using a single measuring point: a proportional oxygen sensor located in the exhaust manifold.
The model used for the estimator is a state model such that the dimension of the state and measurement matrices are unique, whatever the manifold configuration and the sensor position (confluence point or exhaust manifold: unified model), the engine speed (robust model). The study and validation of the estimator was done on an exhaust gas simulator from the exhaust valves to the catalytic converter
The nonlinear and nonstationary behaviour of the exhaust gas propagation process, and thus of the AFR estimator has been brought into evidence. Three estimators with criteria for « breakup of models » have been developped (kalman estimator, estimator with stochastic nonstationary noise state variable, state reconstructor).
The estimator's quality improves with its complexity, the state reconstructor requires setting up a state matrix map of the exhaust manifold.
Meta TagsDetails
DOI
https://doi.org/10.4271/2000-01-0262
Pages
7
Citation
Fantini, J., Chamaillard, Y., Gouy, F., and Peron, L., "Determination of a Nonlinear, Unified and Robust Individual Cylinder Air Fuel Ratio Estimator," SAE Technical Paper 2000-01-0262, 2000, https://doi.org/10.4271/2000-01-0262.
Additional Details
Publisher
Published
Mar 6, 2000
Product Code
2000-01-0262
Content Type
Technical Paper
Language
English