Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials

99SC21

10/10/1999

Event
43rd Stapp Car Crash Conference
Authors Abstract
Content
Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e., dynamic modulus (phase angle) of 500 (10°) and 1250 Pa (27°) at 0.1 and 260 Hz, respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiffer and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7°) and 5100 Pa (56°) at 0.1 and 260 Hz, respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits nonlinear behavior for strains larger than 1%.
Meta TagsDetails
DOI
https://doi.org/10.4271/99SC21
Pages
10
Citation
Brands, D., Bovendeerd, P., Peters, G., Wismans, J. et al., "Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials," SAE Technical Paper 99SC21, 1999, https://doi.org/10.4271/99SC21.
Additional Details
Publisher
Published
Oct 10, 1999
Product Code
99SC21
Content Type
Technical Paper
Language
English