Application of Multi-Objective Optimization Techniques for Improved Emissions and Fuel Economy over Transient Manoeuvres



WCX SAE World Congress Experience
Authors Abstract
This paper presents a novel approach to augment existing engine calibrations to deliver improved engine performance during a transient, through the application of multi-objective optimization techniques to the calibration of the Variable Valve Timing (VVT) system of a 1.0 litre gasoline engine. Current mature calibration approaches for the VVT system are predominantly based on steady state techniques which fail to consider the engine dynamic behaviour in real world driving, which is heavily transient.
In this study the total integrated fuel consumption and engine-out NOx emissions over a 2-minute segment of the transient Worldwide Light-duty Test Cycle are minimised in a constrained multi-objective optimisation framework to achieve an updated calibration for the VVT control. The cycle segment was identified as an area with high NOx emissions. The optimisation framework was developed around a Mean Value Engine Model (MVEM) with representative engine controls which was validated against an engine tested on a dynamometer. The aim of this study was to demonstrate a practical benefit without having to significantly change the existing engine control strategy. Offline optimization with the MVEM model allows exploitation of workstation computational performance to effectively explore the calibration space, reducing both time and investment in engine testing.
The initial simulation optimization results show a strong dominance of both fuel and NOx objectives with a potential reduction in fuel consumption and engine out NOX emissions of up to 5% and 18% respectively compared to the original steady-state based VVT calibration. Engine experimental results have confirmed that NOX emissions can be significantly reduced without any significant detriment to fuel economy over this 2min transient.
Meta TagsDetails
Le Corre, S., Mason, B., Steffen, T., Winward, E. et al., "Application of Multi-Objective Optimization Techniques for Improved Emissions and Fuel Economy over Transient Manoeuvres," SAE Technical Paper 2019-01-1177, 2019,
Additional Details
Apr 2, 2019
Product Code
Content Type
Technical Paper