A Study on Ride Comfort Assessment of Multiple Occupants using Lumped Parameter Analysis

2012-01-0053

04/16/2012

Event
SAE 2012 World Congress & Exhibition
Authors Abstract
Content
Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants. These multi-occupant models can be formulated in a modular manner and solved efficiently using MATLAB/SIMULINK for a given transient road input. The vehicle model and the occupant model are independently verified by favorably comparing computed dynamic responses with published data. A number of cases with different dispositions of occupants in a small car are analyzed using the current modular approach thereby underscoring its potential for efficient ride quality assessment and design of suspension systems.
Meta TagsDetails
DOI
https://doi.org/10.4271/2012-01-0053
Pages
14
Citation
Deb, A., and Joshi, D., "A Study on Ride Comfort Assessment of Multiple Occupants using Lumped Parameter Analysis," SAE Technical Paper 2012-01-0053, 2012, https://doi.org/10.4271/2012-01-0053.
Additional Details
Publisher
Published
Apr 16, 2012
Product Code
2012-01-0053
Content Type
Technical Paper
Language
English