Recently, to enhance passenger comfort, air suspension systems with rubber tube have been replacing conventional coiled spring type suspension in automobile suspension systems.
In this study, the optimum design of rubber and cord materials in rubber tube, aimed at improving the performance of the air suspension system, has been studied. To determine the optimum design, the study altered the fillers and antioxidants in CR (chloroprene rubber) compounds with good ozone-resistance properties, and changed the angles and thickness of the nylon cord. The study produced rubber tubes using cord-reinforced rubber composite materials, then analyzed and measured the resultant physical properties, microstructure, and dimensions. It also evaluated the load capacity, static and dynamic spring characteristics, outer diameter changes, and pressure changes in the loading, and determined the burst pressure of air suspension. Finally, it performed durability tests (3×106 cycles) with air suspension assembly, verifying the optimal combination of rubber and cord materials.