A NOX Trap Study Using Fast Response Emission Analysers for Model Validation

2006-01-0685

04/03/2006

Event
SAE 2006 World Congress & Exhibition
Authors Abstract
Content
Lean burn after treatment systems using NOX traps for reducing emissions from diesel exhausts require periodic regeneration after each storage stage. Optimising these events is a challenging problem and a model capable of simulating these processes would be highly desirable. This study describes an experimental investigation, which has been designed for the purpose of validating a NOX trapping and regenerating model. A commercial computational fluid dynamics (CFD) package is used, to model NOX trapping and regeneration, using the porous medium approach. This approach has proved successful for three way catalysis modelling. To validate the model a one-dimensional NOX trap system has been tested on a turbocharged, EGR cooled, direct injection diesel engine controlled with an engine management system via DSPACE. Fast response emission analysers have been used to provide high resolution data across the after-treatment system for model validation. Measurements show CO is the primary reductant. After the trap NO and NO2 spikes (NOX slippage) were observed both at the beginning and end of the regeneration period. The former is believed to be due to insufficient reductant. Whilst the model can qualitatively describe the main storage and regeneration phases it failed to predict NOX slippage.
Meta TagsDetails
DOI
https://doi.org/10.4271/2006-01-0685
Pages
12
Citation
Alimin, A., Roberts, C., and Benjamin, S., "A NOX Trap Study Using Fast Response Emission Analysers for Model Validation," SAE Technical Paper 2006-01-0685, 2006, https://doi.org/10.4271/2006-01-0685.
Additional Details
Publisher
Published
Apr 3, 2006
Product Code
2006-01-0685
Content Type
Technical Paper
Language
English