A New Model of Traumatic Axonal Injury to Determine the Effects of Strain and Displacement Rates

2006-22-0023

11/06/2006

Event
50th Stapp Car Crash Conference
Authors Abstract
Content
Traumatic brain injury (TBI) continues to be a major health problem, with over 500,000 cases per year with a societal cost of approximately $85 billion in the US. Motor vehicle accidents are the leading cause of such injuries. In many cases of TBI widespread disruption of the axons occurs through a process known as diffuse axonal injury (DAI) or traumatic axonal injury (TAI). In the current study, an in vivo TAI model was developed using spinal nerve roots of adult rats. This model was used to determine functional and structural responses of axons to various strains and displacement rates. Fifty-six L5 dorsal nerve roots were each subjected to a predetermined strain range (<10%, 10-20% and >20%) at a specified displacement rate (0.01 mm/sec and 15 mm/sec) only once. Image analysis was used to determine actual strains on the roots during the pull. Neurophysiologic recordings were performed on the nerve root before and after stretch to determine functional changes in response to stretch, including conduction velocity (CV) and area of the evoked compound action potential (CAP). Structural changes including vascular injury, axotomy, and impaired axoplasmic transport (IAT) were evaluated using hematoxylin and eosin, Palmgren silver impregnation and ϐ-APP staining techniques, respectively. Results showed that CV and the area of the CAP decreased as strain and displacement rate increased. Also, threshold strains for complete nerve conduction loss were 16% and 9% at 0.01 mm/sec and 15 mm/sec rate, respectively. These threshold values indicate the rate dependency of functional injury and indicate that axons tolerate slow loading rates better than higher loading rates. Histological studies revealed increased spacing, tearing of axons, IAT and occurrence of hemorrhage to be strain and displacement rate dependent. Linear relationships existed between the increasing strain and the occurrence rate of axonal injury as evidenced by multiple indicators (IAT, hemorrhage, torn fibers or primary axotomy) at both rates. In conclusion, the results from this study indicate that the severity of both functional and structural injury increased with increases in strain and displacement rate.
Meta TagsDetails
DOI
https://doi.org/10.4271/2006-22-0023
Pages
23
Citation
Singh, A., Lu, Y., Chen, C., Kallakuri, S. et al., "A New Model of Traumatic Axonal Injury to Determine the Effects of Strain and Displacement Rates," SAE Technical Paper 2006-22-0023, 2006, https://doi.org/10.4271/2006-22-0023.
Additional Details
Publisher
Published
Nov 6, 2006
Product Code
2006-22-0023
Content Type
Technical Paper
Language
English