A Model for Fuel Optimal Control of a Spark-Ignited Variable Compression Engine

2006-01-0399

04/03/2006

Event
SAE 2006 World Congress & Exhibition
Authors Abstract
Content
Variable compression engines are a mean to meet the demand on lower fuel consumptions. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. A vital question is thus what combination of compression ratio and ignition angle should be used to achieve maximum engine efficiency.
Fuel optimal control of a variable compression engine is studied and it is shown that a crucial component is the model for the engine torque. A model for the produced work that captures the important effects of ignition and compression ratio is proposed and investigated. The main task for the model is to be a mean for determining the fuel optimal control signals, for each requested engine torque and speed. The contribution is a model suitable for finding this optimal combination. This model consists of well-known components, and the novelty lies in the compilation and validation of the control oriented efficiency model for a variable compression engine.
Despite the models simplicity, it describes the indicated work with good accuracy, and suits its purpose of finding optimal control signals. The evaluation shows that a fuel optimal controller based on the proposed model will miss the optimal IMEP with only 1.5%, and that the corresponding loss in engine efficiency is less than 0.5 percentage units.
Meta TagsDetails
DOI
https://doi.org/10.4271/2006-01-0399
Pages
12
Citation
Nilsson, Y., Eriksson, L., and Gunnarsson, M., "A Model for Fuel Optimal Control of a Spark-Ignited Variable Compression Engine," SAE Technical Paper 2006-01-0399, 2006, https://doi.org/10.4271/2006-01-0399.
Additional Details
Publisher
Published
Apr 3, 2006
Product Code
2006-01-0399
Content Type
Technical Paper
Language
English