Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition. Additionally, strengthening mechanism were studied to have a linear relationship of strength and elongation even in higher strength. As an outcome, solid solution ferritic strengthened ductile SG iron developed to meet light weight design requirements. In this paper, the effect of alloying elements, strengthening mechanism, chemical, mechanical, microstructural properties, weight optimization, manufacturing challenges and validation etc, are discussed in detail.