A Global Reaction Model for the HCCI Combustion Process

2004-01-2950

10/25/2004

Event
2004 Powertrain & Fluid Systems Conference & Exhibition
Authors Abstract
Content
This paper presents a new global reaction model to simulate the Homogeneous Charge Compression Ignition (HCCI) combustion process. The model utilizes seven equations and seven active species. The model includes five reactions that represent degenerate chain branching in the low temperature region, including chain propagation, termination and branching reactions and the reaction of HOOH at the second stage ignition. Two reactions govern the high temperature oxidation, to allow formation and prediction of CO, CO2, and H2O. Thermodynamic parameters were introduced through the enthalpy of formation of each species. We were able to select the rate parameters of the global model to correctly predict the autoignition delay time at constant density for n-heptane and iso-octane, including the effect of equivalence ratio. Keeping the same reactions and rate parameters, simulations were compared with measured and calculated data from our engine operating at the following conditions: speed - 750 RPM, inlet temperature - 393 K to 453 K, fuel - PRF 20, equivalence ratio - 0.4 and 0.5, and volumetric efficiency - 71% and 89%. The simulations are in good agreement with the experimental data for this initial set of runs using PRF 20, including temperature, pressure, ignition delay, combustion duration, and heat release.
Meta TagsDetails
DOI
https://doi.org/10.4271/2004-01-2950
Pages
12
Citation
Zheng, J., Miller, D., and Cernansky, N., "A Global Reaction Model for the HCCI Combustion Process," SAE Technical Paper 2004-01-2950, 2004, https://doi.org/10.4271/2004-01-2950.
Additional Details
Publisher
Published
Oct 25, 2004
Product Code
2004-01-2950
Content Type
Technical Paper
Language
English