Engine Monitoring System Reliability and Validity
- Aerospace Standard
- AIR5120A
- Cancelled
Scope
For Engine Monitoring Systems to meet their potential for improved safety and reduced operation and support costs, significant attention must be focused on their reliability and validity throughout the life cycle. This AIR will provide program managers, designers, developers and customers a concise reference of the activities, approaches and considerations for the development and verification of a highly reliable engine monitoring system.
When applying the guidelines of this AIR it should be noted that engine monitoring systems physically or functionally integrated with the engine control system and/or performing functions that affect engine safety or are used to effect continued operation or return to service decisions shall be subject to the Type Investigation of the product in which they'll be incorporated and have to show compliance with the applicable airworthiness requirements as defined by the responsible Aviation Authority. This is not limited to but includes the application of software levels consistent with the criticality of the performed functions. For instance, low cycle fatigue (LCF) cycle counters for Engine Critical Parts would be included in the Type Investigation but most trend monitors and devices providing information for maintenance would not.
Rationale
Recommended Content
Data Sets - Support Documents
Issuing Committee
E-32 Aerospace Propulsion Systems Health Management
Background
Engine condition monitoring and rotorcraft HUMS(Health and Usage Monitoring Systems)can be used as a tool to track and restore engine performance, improve problem diagnosis, suggest solutions, promote better commercial and military aircraft operation, minimize in-flight failures, and reduce costs of engine maintenance. Because of these and other continuing objectives, the need for consolidated action by a group of experts to promote engine monitoring and rotorcraft condition monitoring know-how and standards was identified. It was deemed appropriate by the SAE Propulsion Division to assign this task to a special committee designated as Committee E-32. The committee has existed for over 40 years and has 26 active members. Purpose / Charter E-32 Committee serves as a forum to gather, record, and publish expert information in the discipline of aerospace propulsion system health management. The Committee gathers and analyzes requirements for propulsion system health management for the various types of air vehicle propulsion systems and develops standards and recommendations for the adoption of aerospace propulsion system health management devices that affect the operation of propulsion systems. Objectives Identifies potential propulsion system parameters suitable for sensing (pressure, temperature, vibration, etc.) and considerations involved in selecting parameters (potential problems, accuracy, cost, etc.), Analyzes the various approaches to aerospace propulsion system health management (e.g., airborne vibration health management systems, fault prediction capabilities, ground software interfaces, etc.) and establishes criteria for cost effective systems, and guidance regarding best practices for designing propulsion health management systems, Develops appropriate standards for aerospace propulsion system health management equipment and techniques; e.g., types of sensors, identification of signals which should be led to common diagnostic connectors, etc., Develops new requirements and uses for aerospace propulsion system health management to promote sustainable and cost effective operation of air vehicles, and Hosts technical conferences related to health management of propulsion systems. Provide a means to gain regulatory approval for utilizing EHM data in a range of maintenance activities.