This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Acoustical Modeling and Test Correlation of an Intake Manifold and Charge Air Cooler Assembly for a 4-Cylinder Turbocharged Engine
Technical Paper
2023-01-1076
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
The charge air cooler (CAC), which is placed between the compressor and the engine intake manifold (IM), is an important component in a turbocharged engine. It is essential to capture the temperature change, the pressure drop or the acoustical wave behavior of the charge air cooler in the one-dimensional(1D) simulation model for the predictive accuracy of engine performance and intake noise. In this paper, the emphasis is on the acoustic modeling of an intake manifold and charge air cooler assembly for the low frequency engine intake order noise. In this assembly, the core of the charge air cooler is embedded in the plenum of the intake manifold. The modeling and correlation process is comprised of three steps. First, the charge air cooler core is removed from the intake manifold and put into a rectangular box matching its envelope with a single air inlet and outlet, thereby simplifying the complex shape of the manifold with the different runner components. The acoustic transmission loss across the charge air cooler core in this box is simulated using different modeling parameters in the 1D simulation model and compared with the transmission loss test bench results. Next, once models are established for the core itself, it is reinstalled into the plenum and the full intake manifold and charge air cooler assembly is tested and modeled. Transmission loss from the different runner paths to the zip-tube of the intake manifold are simulated and correlated to the test bench data. Finally, the transmission loss correlated model of the assembly is incorporated with the full engine performance calibrated model. The in-duct engine order sound pressure levels at the compressor outlet and inlet are simulated at full load condition across the RPM range. The simulation results are compared with the in-duct measurement data from the engine dyno test. The correlation of the firing order and its first harmonic order of the in-duct sound pressure level is evaluated. Good correlation is observed at these orders. In conclusion, the best practices of acoustic modeling of a similar assembly using the developed process are recommended.
Authors
Topic
Citation
Zhang, W., Likich, M., and O'Hare, D., "Acoustical Modeling and Test Correlation of an Intake Manifold and Charge Air Cooler Assembly for a 4-Cylinder Turbocharged Engine," SAE Technical Paper 2023-01-1076, 2023, https://doi.org/10.4271/2023-01-1076.Also In
References
- Morel , T. , Flemming , M. , and LaPointe , L. Characterization of Manifold Dynamics in the Chrysler 2.2 S.I. Engine by Measurements and Simulation SAE Technical Paper 900679 1990 https://doi.org/10.4271/900679
- Rämmal , H. and Åbom , M. Acoustics of Turbochargers SAE Technical Paper 2007-01-2205 2007 https://doi.org/10.4271/2007-01-2205
- Tiikoja , H. , Rammal , H. , Abom , M. , and Boden , H. Sound Transmission in Automotive Turbochargers SAE Technical Paper 2011-01-1525 2011 https://doi.org/10.4271/2011-01-1525
- Zhang , W. , Lynch , M. , and Reynolds , R. A Practical Simulation Procedure Using CFD to Predict Flow Induced Sound of a Turbocharger Compressor Journal of Passenger Cars - Mechanical Systems 8 2 2015
- Evans , D. and Ward , A. Minimizing Turbocharger Whoosh Noise for Diesel Powertrains SAE Technical Paper 2005-01-2485 2005 https://doi.org/10.4271/2005-01-2485
- Torregrosa , A. , Arnau , F. , Piqueras , P. , Reyes-Belmonte , M. et al. Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code SAE Technical Paper 2012-01-0834 2012 https://doi.org/10.4271/2012-01-0834
- GT-Power User’s Manual, Version 6.2 Gamma Technologies 2006
- Morel , T. , Flemming , M. , and LaPointe , L. Characterization of Manifold Dynamics in the Chrysler 2.2 S.I SAE Technical Paper 900679 1990 https://doi.org/10.4271/900679
- Seldon , W. , Hamilton , J. , Cromas , J. , and Schimmel , D. Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine SAE Technical Paper 2017-01-1794 2017 https://doi.org/10.4271/2017-01-1794
- Silvestri , J. , Morel , T. , and Costello , M. Study of Intake System Wave Dynamics and Acoustics by Simulation and Experiment SAE Technical Paper 940206 1994 https://doi.org/10.4271/940206
- Zhang , W. , Butler , B. , Likich , M. , and Lynch , M. A Practical Procedure to Predict AIS Inlet Noise Using CAE Simulation Tools SAE Technical Paper 2013-01-1004 https://doi.org/10.4271/2013-01-1004
- Zhang , W. , Likich , M. , Butler , B. , and White , J. A Case Study on Clean Side Duct Radiated Shell Noise Prediction SAE Int. J. Veh. Dyn., Stab., and NVH 1 2 2017 119 124 https://doi.org/10.4271/2017-01-0444
- Green , E. Improving Tube Sound Transmission Loss Measurements Using the Transfer Matrix Technique to Remove the Effect of Area Changes SAE Technical Paper 2015-01-2310 2015 https://doi.org/10.4271/2015-01-2310