This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies

Journal Article
2022-01-0455
ISSN: 2641-9645, e-ISSN: 2641-9645
Published March 29, 2022 by SAE International in United States
Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies
Sector:
Citation: Lopez Pintor, D. and Dec, J., "Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies," SAE Int. J. Adv. & Curr. Prac. in Mobility 4(4):1198-1216, 2022, https://doi.org/10.4271/2022-01-0455.
Language: English

References

  1. Li , T.-M. and Simmons , R.F. Twenty First Symposium (International) on Combustion The Combustion Institute Pittsburgh 1988 455 462
  2. ASTM D613
  3. United States Environmental Protection Agency (EPA) https://www.epa.gov/diesel-fuel-standards/diesel-fuel-standards-and-rulemakings
  4. Sarıkoç , S. Fuels of the Diesel-Gasoline Engines and Their Properties IntechOpen 2020
  5. Mammadova , T. et al. Production of Diesel Fractions by Catalytic Cracking of Vacuum Gas Oil and Its Mixture with Cottonseed Oil Under the Influence of a Magnetic Field Egyptian Journal of Petroleum 27 4 Dec. 2018 1029 1033 10.1016/j.ejpe.2018.03.010
  6. Ghosh , P. Predicting the Effect of Cetane Improvers on Diesel Fuels Energy Fuels 22 2 Mar. 2008 1073 1079 https://doi.org/10.1021/ef0701079
  7. Hanson , R. , Kokjohn , S. , Splitter , D. , and Reitz , R.D. Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load SAE Int. J. Engines 4 1 Apr. 2011 394 411 https://doi.org/10.4271/2011-01-0361
  8. Kaddatz , J. , Andrie , M. , Reitz , R.D. , and Kokjohn , S. Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver SAE Technical Paper 2012-01-1110 2012 https://doi.org/10.4271/2012-01-1110
  9. Dempsey , A.B. , Walker , N.R. , and Reitz , R.D. Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion SAE Int. J. Fuels Lubr. 6 1 Apr. 2013 170 187 https://doi.org/10.4271/2013-01-1678
  10. Dempsey , A.B. , Curran , S. , and Reitz , R.D. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine SAE Int. J. Engines 8 2 2015 859 877 https://doi.org/10.4271/2015-01-0855
  11. Ji , C. , Dec , J.E. , Dernotte , J. , and Cannella , W. Effect of Ignition Improvers on the Combustion Performance of Regular-Grade E10 Gasoline in an HCCI Engine SAE Int. J. Engines 7 2 2014 790 806 https://doi.org/10.4271/2014-01-1282
  12. Ji , C. , Dec , J. , Dernotte , J. , and Cannella , W. Boosted Premixed-LTGC / HCCI Combustion of EHN-Doped Gasoline for Engine Speeds up to 2400 rpm SAE Int. J. Engines 9 4 Oct. 2016 https://doi.org/10.4271/2016-01-2295
  13. Hosseini , V. , Neill , W.S. , Guo , H. , Chippior , W.L. et al. Effects of Different Cetane Number Enhancement Strategies on HCCI Combustion and Emissions International Journal of Engine Research 12 2 2011 89 108 https://doi.org/10.1177/1468087410395873
  14. Dec , J.E. and Lopez-Pintor , D. Sep. 2020
  15. Lopez-Pintor , D. and Dec , J.E. Experimental Evaluation of a Gasoline-Like Fuel Blend with High Renewable Content to Simultaneously Increase φ-Sensitivity, RON, and Octane Sensitivity Energy Fuels 35 20 Oct. 2021 16482 16493 10.1021/acs.energyfuels.1c01979
  16. Dec , J.E. and Yang , Y. Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline SAE Int. J. Engines 3 1 2010 750 767 https://doi.org/10.4271/2010-01-1086
  17. Lopez Pintor , D. , Dec , J.E. , and Gentz , G. Experimental Evaluation of a Custom Gasoline-Like Blend Designed to Simultaneously Improve φ-Sensitivity, RON and Octane Sensitivity SAE Int. J. Adv. & Curr. Prac. in Mobility 2 4 2020 2196 2216 https://doi.org/10.4271/2020-01-1136
  18. Pritchard , H.O. Thermal Decomposition of Isooctyl Nitrate Combustion and Flame 75 3 Mar. 1989 415 416 10.1016/0010-2180(89)90052-7
  19. Stein , Y. , Yetter , R.A. , Dryer , F.L. , and Aradi , A. The Autoignition Behavior of Surrogate Diesel Fuel Mixtures and the Chemical Effects of 2-Ethylhexyl Nitrate (2-EHN) Cetane Improver International Fuels & Lubricants Meeting & Exposition 1999 1999-01-1504
  20. Oxley , J.C. , Smith , J.L. , Rogers , E. , Ye , W. et al. Fuel Combustion Additives: A Study of Their Thermal Stabilities and Decomposition Pathways Energy Fuels 14 6 Nov. 2000 1252 1264 10.1021/ef000101i
  21. Hartmann , M. et al. Experiments and Modeling of Ignition Delay Times, Flame Structure and Intermediate Species of EHN-Doped Stoichiometric n-Heptane/Air Combustion Proceedings of the Combustion Institute 32 1 Jan. 2009 197 204 10.1016/j.proci.2008.06.068
  22. Almodovar , C.A. and Goldsmith , C.F. Laser Schlieren Study of the Thermal Decomposition of 2-Ethylhexyl-Nitrate Proceedings of the Combustion Institute 38 1 Jan. 2021 997 1005 10.1016/j.proci.2020.07.105
  23. Andrae , J.C.G. Semidetailed Kinetic Model for Gasoline Surrogate Fuel Interactions with the Ignition Enhancer 2-Ethylhexyl Nitrate Energy Fuels 29 6 Jun. 2015 3944 3952 10.1021/acs.energyfuels.5b00589
  24. Gadhvi , S.N. Relationship between Fuel Properties and Cetane Response of Cetane Improver for Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy Duty Diesel Engine Petroleum and Chemical Industry International 2 1 2019 1 5
  25. Adhikary , B.D. Low Load Operation in a Light-Duty Diesel Engine Using High Octane Fuels and Additives Madison University of Wisconsin 2014
  26. Goldsborough , S.S. , Johnson , M.V. , Banyon , C. , Pitz , W.J. et al. Experimental and Modeling Study of Fuel Interactions with an Alkyl Nitrate Cetane Enhancer, 2-Ethyl-Hexyl Nitrate Proceedings of the Combustion Institute 35 1 Jan. 2015 571 579 10.1016/j.proci.2014.06.048
  27. Cheng , S. et al. Autoignition and Preliminary Heat Release of Gasoline Surrogates and Their Blends with Ethanol at Engine-Relevant Conditions: Experiments and Comprehensive Kinetic Modeling Combustion and Flame 228 Jun. 2021 57 77 10.1016/j.combustflame.2021.01.033
  28. Bornemann , H. , Scheidt , F. , and Sander , W. Thermal Decomposition of 2-Ethylhexyl Nitrate (2-EHN) International Journal of Chemical Kinetics 34 1 2002 34 38 https://doi.org/10.1002/kin.10017
  29. Arenas , J.F. , Avila , F.J. , Otero , J.C. , Peláez , D. et al. Approach to the Atmospheric Chemistry of Methyl Nitrate and Methylperoxy Nitrite. Chemical Mechanisms of Their Formation and Decomposition Reactions in the Gas Phase J. Phys. Chem. A 112 2 Jan. 2008 249 255 10.1021/jp075546n
  30. He , S. , Chen , Z. , Zhang , X. , He , S. et al. Photochemical Reactions of Methyl and Ethyl Nitrate: a Dual Role for Alkyl Nitrates in the Nitrogen Cycle Environ. Chem. 8 6 Nov. 2011 529 542 10.1071/EN10004
  31. Gentz , G. , Dernotte , J. , Ji , C. , Lopez Pintor , D. et al. Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates SAE Technical Paper 2019-01-1156 2019 https://doi.org/10.4271/2019-01-1156
  32. Dernotte , J. , Dec , J. , and Ji , C. Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy SAE Technical Paper 2017-01-0728 2017 https://doi.org/10.4271/2017-01-0728
  33. Gentz , G. , Dernotte , J. , Ji , C. , and Dec , J. Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine - Effects of Equivalence Ratio and Intake Boost SAE Technical Paper 2018-01-1252 2018 https://doi.org/10.4271/2018-01-1252
  34. Dec , J.E. , Dernotte , J. , and Ji , C. Increasing the Load Range, Load-to-Boost Ratio, and Efficiency of Low-Temperature Gasoline Combustion (LTGC) Engines SAE Int. J. Engines 10 3 2017 https://doi.org/10.4271/2017-01-0731
  35. Eng , J.A. Characterization of Pressure Waves in HCCI Combustion SAE Technical Paper 2002-01-2859 2002 https://doi.org/10.4271/2002-01-2859
  36. Dernotte , J. , Dec , J.E. , and Ji , C. Energy Distribution Analysis in Boosted HCCI-Like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency SAE Int. J. Engines 8 3 2015 956 980 https://doi.org/10.4271/2015-01-0824
  37. Woschni , G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine SAE Technical Paper 670931 1967 https://doi.org/10.4271/670931
  38. Westbrook , C.K. , Sjöberg , M. , and Cernansky , N.P. A New Chemical Kinetic Method of Determining RON and MON Values for Single Component and Multicomponent Mixtures of Engine Fuels Combustion and Flame 195 Sep. 2018 50 62 10.1016/j.combustflame.2018.03.038
  39. Dec , J.E. , Yang , Y. , and Dronniou , N. Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline SAE Int. J. Engines 4 1 2011 1169 1189 https://doi.org/10.4271/2011-01-0897
  40. Lopez Pintor , D. , Gentz , G. , and Dec , J. Mixture Stratification for CA50 Control of LTGC Engines with Reactivity-Enhanced and Non-Additized Gasoline SAE Technical Paper 2021-01-0513 2021 https://doi.org/10.4271/2021-01-0513
  41. Lopez Pintor , D. , Dec , J. , and Gentz , G. Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property SAE Technical Paper 2019-01-0961 2019 https://doi.org/10.4271/2019-01-0961
  42. He , K. , Ierapetritou , M.G. , and Androulakis , I.P. Exploring Flux Representations of Complex Kinetics Networks American Institute of Chemical Engineers Journal 58 2 2011 553 567 https://doi.org/10.1002/aic.12608
  43. He , K. , Ierapetritou , M.G. , and Androulakis , I.P. A Graph-Based Approach to Developing Adaptive Representations of Complex Reaction Mechanisms Combustion and Flame 155 4 Dec. 2008 585 604 10.1016/j.combustflame.2008.05.004

Cited By