This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Neural Network NARMA-L2 Tracking Control for Electronic Throttle System*

Journal Article
2022-01-0411
ISSN: 2641-9637, e-ISSN: 2641-9645
Published March 29, 2022 by SAE International in United States
A Neural Network NARMA-L2 Tracking Control for Electronic Throttle System*
Sector:
Citation: Al-Assadi, S., "A Neural Network NARMA-L2 Tracking Control for Electronic Throttle System*," SAE Int. J. Adv. & Curr. Prac. in Mobility 5(2):456-462, 2023, https://doi.org/10.4271/2022-01-0411.
Language: English

Abstract:

In this paper, the Artificial Neural Network (ANN) control strategy based on the Nonlinear Auto Regressive Moving Average-Level 2 (NARMA-L2) technique has been used for tracking control of an electronic throttle body. The NARMA-L2 nonlinear plant model is first identified offline by training using a set of input-output data pairs measured at different operating conditions. This data was collected from an actual operation of the throttle body running in a closed-loop control system on a prototype vehicle. The identified NARMA-L2 plant model was then inverted and used to force the throttle output position to approximately track any reference inputs with multiple set-point changes at different operating conditions. The NARMA-L2 model was reconfigured to be an equivalent model of a feed-forward controller that can cancel not only the actual dynamic behavior of the throttle body but also the nonlinearity effects. This type of controller has great potential to overcome the difficulty of developing an inverse dynamic model of the throttle body [1] and has the ability to compensate any un-modeled nonlinear dynamic changes that may be excited due to environmental changes. These changes can include load, temperature, humidity, and external disturbances with noise effects that may be introduced into the closed-loop control of the throttle body during real time operation in the vehicle. The resulting closed loop control system used the NARMA-L2 architecture that have a multilayer perceptron neural network structure with the dynamic back-propagation algorithm becomes an implicit algebraic model that perfectly tracks any multiple set-point changes at different operating conditions. Testing results from real time implementation are provided to illustrate the new controller performance for tracking controls during actual operation on a prototype vehicle. The identified NARMA-L2 neuro-controller shows more robustness and better performs as compared to other controllers developed in previous work [1-3].
* This work was done while the author was at IAV Automotive Engineering Inc, 15620 Technology Drive, Northville, MI 48168.
† Currently working with MAHLE Powertrain LLC, 14900 GalleonCourt, Plymouth, MI 48170.