This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

Journal Article
2021-01-0409
ISSN: 2641-9645, e-ISSN: 2641-9645
Published April 06, 2021 by SAE International in United States
CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel
Citation: Zhou, Q., Lucchini, T., D'Errico, G., Novella, R. et al., "CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(5):2433-2451, 2021, https://doi.org/10.4271/2021-01-0409.
Language: English

References

  1. Badami , M. , Mallamo , F. , Millo , F. , and Rossi , E.E. Influence of Multiple Injection Strategies on Emissions, Combustion Noise and BSFC of a DI Common Rail Diesel Engine SAE Transactions 111 1118 1129 2002 https://doi.org/10.4271/2002-01-0503
  2. Zhao , F. , Asmus , T.N. , Assanis , D.N. , Dec , J.E. , Eng , J.A. , and Najt , P.M. Homogeneous Charge Compression Ignition (HCCI) Engines SAE Technical Paper PT-94 2003 978-0-7680-1123-4
  3. Selim , M.Y.E. Sensitivity of Dual Fuel Engine Combustion and Knocking Limits to Gaseous Fuel Composition Energy Conversion and Management 45 411 425 2004 10.1016/S0196-8904(03)00150-X
  4. Reitz , R.D. and Duraisamy , G. Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines Progress in Energy and Combustion Science 46 12 71 2015 10.1016/j.pecs.2014.05.003
  5. Kalghatgi , G.T. The Outlook for Fuels for Internal Combustion Engines International Journal of Engine Research 15 383 398 2014 10.1177/1468087414526189
  6. Lu , X. , Han , D. , and Huang , Z. Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes Progress in Energy and Combustion Science 37 741 783 2011 10.1016/j.pecs.2011.03.003
  7. Lopez , J.J. , Garcia-Oliver , J.M. , Garcia , A. , and Domenech , V. Gasoline Effects on Spray Characteristics, Mixing and Auto-Ignition Processes in a CI Engine under Partially Premixed Combustion Conditions Applied Thermal Engineering 70 996 1006 2014 10.1016/j.applthermaleng.2014.06.027
  8. Payri , R. , Garcia-Oliver , J.M. , Xuan , T. , and Bardi , M. A Study on Diesel Spray Tip Penetration and Radial Expansion under Reacting Conditions Applied Thermal Engineering 90 619 629 2015 10.1016/j.applthermaleng.2014.06.027
  9. Farouk , T.I. , Xu , Y. , Avedisian , C.T. , and Dryer , F.L. Combustion Characteristics of Primary Reference Fuel (PRF) Droplets: Single Stage High Temperature Combustion to Multistage Cool Flame Behavior Proceedings of the Combustion Institute 36 2585 2594 2017 10.1016/j.proci.2016.07.066
  10. Bhattachar , S. and Haworth , D.C. Simulations of Transient N-Heptane and N-Dodecane Spray Flames under Engine-Relevant Conditions using a Transported PDF Method Combustion and Flame 160 2083 2102 2013 10.1016/j.combustflame.2013.05.003
  11. Mittal , V. , Cook , D.J. , and Pitsch , H. An Extended Multi-Regime Flamelet Model for IC Engines Combustion and Flame 159 2767 2776 2012 10.1016/j.combustflame.2012.01.014
  12. Kong , S.-C. , Han , Z. , and Reitz , R.D. The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation SAE Transactions 104 502 518 1995 https://doi.org/10.4271/950278
  13. Colin , O. and Benkenida , A. The 3-Zones Extended Coherent Flame Model (ECFM3z) for Computing Premixed/Diffusion Combustion Oil & Gas Science and Technology 59 593 609 2004 10.2516/ogst:2004043
  14. Haworth , D.C. Progress in Probability Density Function Methods for Turbulent Reacting Flows Progress in Energy and Combustion Science 36 168 259 2010 10.1016/j.pecs.2009.09.003
  15. Felden , A. , Esclapez , L. , Riber , E. , Cuenot , B. , and Wang , H. Including Real Fuel Chemistry in LES of Turbulent Spray Combustion Combustion and Flame 193 397 416 2018 10.1016/j.combustflame.2018.03.027
  16. van Oijen , J.A. , Lammers , F.A. , and de Goey , L.P.H. Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds Combustion and Flame 127 2124 2134 2001 10.1016/S0010-2180(01)00316-9
  17. Gicquel , O. , Darabiha , N. , and Thevenin , D. Liminar Premixed Hydrogen/Air Counterflow Flame Simulations using Flame Prolongation of ILDM with Differential Diffusion Proceedings of the Combustion Institute 28 1901 1908 2000 10.1016/S0082-0784(00)80594-9
  18. Pierce , C.D. and Moin , P. Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion Journal of Fluid Mechanics 504 73 97 2004 10.1017/S0022112004008213
  19. Lionel , M. , Jean-Baptiste , M. , Stephane , J. , and Olivier , C. Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD SAE Technical Paper 2013-01-1093 2015 https://doi.org/10.4271/2013-01-1093
  20. Naud , B. , Novella , R. , Pastor , J.M. , and Winklinger , J.F. RANS Modelling of a Lifted H2/N2 Flame Using an Unsteady Flamelet Progress Variable Approach with Presumed PDF Combustion and Flame 162 893 906 2015 10.1016/j.combustflame.2014.09.014
  21. Michel , J.-B. , Colin , O. , Angelberger , C. , and Veynante , D. Using the Tabulated Diffusion Flamelet Model ADF-PCM to Simulate a Lifted Methane Air Jet Flame Combustion and Flame 156 1318 1331 2009 10.1016/j.combustflame.2008.12.012
  22. Lucchini , T. , Pontoni , D. , D’Errico , G. , and Somers , B. Modeling Diesel Combustion with Tabulated Kinetics and Different Flame Structure Assumptions Based on Flamelet Approach International Journal of Engine Research 21 89 100 2020 10.1177/1468087419862945
  23. Zhou , Q. , Lucchini , T. , D’Errico , G. , Maes , N. et al. Computational Modeling of Diesel Spray Combustion with Multiple Injections SAE Technical Paper 2020-04-25 2020 https://doi.org/10.4271/2020-01-1155
  24. Lucchini , T. , D’Errico , G. , Cerri , T. , Onorati , A. , and Hardy , G. Experimental Validation of Combustion Models for Diesel Engines Based on Tabulated Kinetics in a Wide Range of Operating Conditions SAE Technical Paper 2017-01-15 2017 https://doi.org/10.4271/2017-24-0029
  25. Zhou , Q. , Lucchini , T. , D’Errico , G. , and Hardy , G. Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics SAE Technical Paper 2019-24-0088 2019 https://doi.org/10.4271/2019-24-0088
  26. Jangi , M. , Lucchini , T. , Gong , C. , and Bai , X.-S. Effects of Fuel Cetane Number on the Structure of Diesel Spray Combustion: An Accelerated Eulerian Stochastic Fields Method Combustion Theory and Modelling 19 549 567 2015 10.1080/13647830.2015.1057234
  27. Yimer , I. , Campbell , I. , and Jiang , L.-Y. Estimation of the Turbulent Schmidt Number from Experimental Profiles of Axial Velocity and Concentration for High-Reynolds-Number Jet Flows Canadian Aeronautics and Space Journal 48 195 200 2002 10.5589/q02-024
  28. Spalding , D.B. Concentration Fluctuations in a Round Turbulent Free Jet Chemical Engineering Science 26 95 107 1971 10.1016/0009-2509(71)86083-9
  29. Launder , B.E. Heat and Mass Transport Bradshaw , P. Turbulence Topics in Applied Physics Berlin, Heidelberg Springer 1976 231 287
  30. Tominaga , Y. and Stathopoulos , T. Turbulent Schmidt numbers for CFD Analysis with Various Types of Flowfield Atmospheric Environment 41 8091 8099 2007 10.1016/j.atmosenv.2007.06.054
  31. Combest , D.P. , Ramachandran , P.A. , and Dudukovic , M.P. On the Gradient Diffusion Hypothesis and Passive Scalar Transport in Turbulent Flows Industrial & Engineering Chemistry Research 50 8817 8823 2011 10.1021/ie200055s
  32. Mompean , G. Three-Equation Turbulence Model for Prediction of the Mean Square Temperature Variance in Grid-Generated Flows and Round Jets International Journal of Heat and Mass Transfer 37 1165 1172 1994 10.1016/0017-9310(94)90202-X
  33. Crocker , D.S. , Nickolaus , D. , and Smith , C.E. CFD Modeling of a Gas Turbine Combustor from Compressor Exit to Turbine Inlet Journal of Engineering for Gas Turbines and Power 121 89 95 1999 10.1115/1.2816318
  34. Eklund , D. , Baurle , R. , and Gruber , M. Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in Dual-Mode Combustion 39th Aerospace Sciences Meeting and Exhibit American Institute of Aeronautics and Astronautics
  35. Xiao , X. , Edwards , J.R. , Hassan , H.A. , and Culter , A.D. Variable Turbulent Schmidt-Number Formulation for Scramjet Applications AIAA J 44 3 593 599 2006 10.2514/1.15450
  36. https://ecn.sandia.gov
  37. Desantes , J.M. , Garcia-Oliver , J.M. , Xuan , T. , and Vera-Tudela , W. A Study on Tip Penetration Velocity and Radial Expansion of Reacting Diesel Sprays with Different Fuels Fuel 207 323 335 2017 10.1016/j.fuel.2017.06.108
  38. Pastor , J.V. , Garcia-Oliver , J.M. , Lopez , J.J. , and Vera-Tudela , W. An Experimental Study of the Effects of Fuel Properties on Reactive Spray Evolution Using Primary Reference Fuels Fuel 163 260 270 2016 10.1016/j.fuel.2015.09.064
  39. Lucchini , T. , D’Errico , G. , Onorati , A. , Frassoldati , A. et al. Modeling Non-Premixed Combustion Using Tabulated Kinetics and Different Fame Structure Assumptions SAE International Journal of Engines 10 2 593 607 2017 https://doi.org/10.4271/2017-01-0556
  40. D’Errico , G. , Lucchini , T. , Onorati , A. , and Hardy , G. Computational Fluid Dynamics Modeling of Combustion in Heavy-Duty Diesel Engines International Journal of Engine Research 16 112 124 2015 10.1177/1468087414561276
  41. Lehtiniemi , H. , Zhang , Y. , Rawat , R. , and Mauss , F. Efficient 3-D CFD Combustion Modeling with Transient Flamelet Models SAE Technical Paper 2008-01-0957 2008 https://doi.org/10.4271/2008-01-0957
  42. Barths , H. , Hasse , C. , and Peters , N. Computational Fluid Dynamics Modelling of Non-Premixed Combustion in Direct Injection Diesel Engines International Journal of Engine Research 1 249 267 2000 10.1243/1468087001545164
  43. Peters , N. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion Progress in Energy and Combustion Science 10 319 339 1984 10.1016/0360-1285(84)90114-X
  44. D’Errico , G. , Lucchini , T. , Di Gioia , R. , and Bonandrini , G. Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR SAE Technical Paper 2012-01-0154 2012 https://doi.org/10.4271/2012-01-0154
  45. Lucchini , T. , Cornolti , L. , Montenegro , G. , D’Errico , G. et al. A Comprehensive Model to Predict the Initial Stage of Combustion in SI Engines SAE Technical Paper 2013-01-1087 2013 https://doi.org/10.4271/2013-01-1087
  46. Lucchini , T. , Della Torre , A. , D’Errico , G. , Montenegro , G. et al. Automatic Mesh Generation for CFD Simulations of Direct-Injection Engines SAE Technical Paper 2015-01-0376 2015 https://doi.org/10.4271/2015-01-0376
  47. POPE , S.B. An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly AIAA Journal 16 3 279 281 1978 10.2514/3.7521
  48. Ferziger , J.H. and Peric , M. Computational Methods for Fluid Dynamics Springer Science & Business Media 2012
  49. Reitz , R. Modeling Atomization Processes in High-Pressure Vaporizing Sprays Atomisation Spray Technology 3 309 337 Jan. 1987
  50. Reitz , R.D. and Diwakar , R. Effect of Drop Breakup on Fuel Sprays SAE Technical Paper 860469 1986 https://doi.org/10.4271/860469
  51. Baumgarten , C. Mixture Formation in Internal Combustion Engines. Heat and Mass Transfer Berlin Heidelberg Springer-Verlag 2006
  52. Lucchini , T. , D’Errico , G. , and Ettorre , D. Numerical Investigation of the Spray-Mesh-Turbulence Interactions for High-Pressure, Evaporating Sprays at Engine Conditions International Journal of Heat and Fluid Flow 32 285 297 2011 10.1016/j.ijheatfluidflow.2010.07.006
  53. Zhou , Q. , Lucchini , T. , D’Errico , G. , Hardy , G. , and Lu , X. Modeling Heavy-Duty Diesel Engines Using Tabulated Kinetics in a Wide Range of Operating Conditions International Journal of Engine Research 2020 10.1177/1468087419896165
  54. Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels International Journal of Chemical Kinetics 46 9 512 542 2014 10.1002/kin.20867
  55. Stagni , A. , Cuoci , A. , Frassoldati , A. , Faravelli , T. , and Ranzi , E. Lumping and Reduction of Detailed Kinetic Schemes: An Effective Coupling Industrial & Engineering Chemistry Research 53 9004 9016 2014 10.1021/ie403272f
  56. Stagni , A. , Frassoldati , A. , Cuoci , A. , Faravelli , T. , and Ranzi , E. Skeletal Mechanism Reduction through Species-Targeted Sensitivity Analysis Combustion and Flame 163 382 393 2016 10.1016/j.combustflame.2015.10.013
  57. Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions Proceedings of the Combustion Institute 33 193 200 2011 10.1016/j.proci.2010.05.027
  58. Payri , R. , Garcia-Oliver , J.M. , Bardi , M. , and Manin , J. Fuel Temperature Influence on Diesel Sprays in Inert and Reacting Conditions Applied Thermal Engineering 35 185 195 2012 10.1016/j.applthermaleng.2011.10.027
  59. Paredi , D. , Lucchini , T. , D’Errico , G. , Onorati , A. et al. CFD Modeling of Spray Evolution for Spark-Ignition, Direct Injection Engines AIP Conference Proceedings 2191 2019 020125 10.1063/1.5138858
  60. Paredi , D. , Lucchini , T. , D’Errico , G. , Onorati , A. et al. Validation of a Comprehensive Computational Fluid Dynamics Methodology to Predict the Direct Injection Process of Gasoline Sprays Using Spray G Experimental Data International Journal of Engine Research 21 199 216 2020 10.1177/1468087419868020
  61. Payri , F. , Garcia-Oliver , J.M. , Novella , R. , and Perez-Sanchez , E.J. Influence of the N-Dodecane Chemical Mechanism on the CFD Modelling of the Diesel-Like ECN Spray a Flame Structure at Different Ambient Conditions Combustion and Flame 208 198 218 2019 10.1016/j.combustflame.2019.06.032
  62. Mastorakos , E. Ignition of Turbulent Non-Premixed Flames Progress in Energy and Combustion Science 35 57 97 2009 10.1016/j.pecs.2008.07.002
  63. Mastorakos , E. , Baritaud , T.A. , and Poinsot , T.J. Numerical Simulations of Autoignition in Turbulent Mixing Flows Combustion and Flame 109 198 223 1997 10.1016/S0010-2180(96)00149-6
  64. Dahms , R.N. , Paczko , G.A. , Skeen , S.A. , and Pickett , L.M. Understanding the Ignition Mechanism of High-Pressure Spray Flames Proceedings of the Combustion Institute 36 2615 2623 2017 10.1016/j.proci.2016.08.023
  65. Gong , C. , Jangi , M. , and Bai , X.-S. Large Eddy Simulation of N-Dodecane Spray Combustion in a High Pressure Combustion Vessel Applied Energy 136 373 381 2014 10.1016/j.apenergy.2014.09.030
  66. Nishiki , S. , Hasegawa , T. , Borghi , R. , and Himeno , R. Modelling of Turbulent Scalar Flux in Turbulent Premixed Flames Based on DNS Databases Combustion Theory and Modelling 10 39 55 2006 10.1080/13647830500307477
  67. Keistler , P. , Xiao , X. , Hassan , H. , and Rodriguez , C. Simulation of Supersonic Combustion Using Variable Turbulent Prandtl/Schmidt Number Formulation 36th AIAA Fluid Dynamics Conference and Exhibit 10.2514/6.2006-3733
  68. Watanabe , T. , Sakai , Y. , Nagata , K. , and Terashima , O. Turbulent Schmidt Number and Eddy Diffusivity Change with a Chemical Reaction Journal of Fluid Mechanics 754 98 121 2014 10.1017/jfm.2014.387

Cited By