This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CO 2 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels

Journal Article
2020-37-0026
ISSN: 2641-9645, e-ISSN: 2641-9645
Published June 30, 2020 by SAE International in United States
CO
<sub>2</sub>
 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels
Sector:
Citation: Benajes, J., Garcia, A., Monsalve-Serrano, J., and Martinez, S., "CO2 Well-to-Wheel Abatement with Plug-In Hybrid Electric Vehicles Running under Low Temperature Combustion Mode with Green Fuels," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(1):731-743, 2021, https://doi.org/10.4271/2020-37-0026.
Language: English

References

  1. Fayad , M.A. , Fernández-Rodríguez , D. , Herreros , J.M. , Lapuerta , M. , and Tsolakis , A. Interactions between Aftertreatment Systems Architecture and Combustion of Oxygenated Fuels for Improved Low Temperature Catalysts Activity Fuel 229 189 197 2018 10.1016/j.fuel.2018.05.002
  2. Benajes , J. , García , A. , Monsalve-Serrano , J. , Balloul , I. , and Pradel , G. An Assessment of the Dual-Mode Reactivity Controlled Compression Ignition/Conventional Diesel Combustion Capabilities in a EURO VI Medium-Duty Diesel Engine Fueled with an Intermediate Ethanol-Gasoline Blend and Biodiesel Energy Convers Manag 123 381 391 2016 10.1016/j.enconman.2016.06.059
  3. Pedrozo , V.B. , May , I. , Guan , W. , and Zhao , H. High Efficiency Ethanol-Diesel Dual-Fuel Combustion: A Comparison against Conventional Diesel Combustion from Low to Full Engine Load Fuel 230 440 451 2018 10.1016/j.fuel.2018.05.034
  4. Pan , S. , Li , X. , Han , W. , and Huang , Y. An Experimental Investigation on Multi-Cylinder RCCI Engine Fueled with 2-Butanol/Diesel Energy Convers Manag 154 92 101 2017 10.1016/j.enconman.2017.10.047
  5. Ansari , E. and Shahbakhti , M. Optimization of Performance and Operational Cost for a Dual Mode Diesel-Natural Gas RCCI and Diesel Combustion Engine 231 549 561 2018 10.1016/j.apenergy.2018.09.040
  6. Kokjohn , S.L. , Hanson , R.M. , Splitter , D.A. , and Reitz , R.D. Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion Int J Engine Res 12 209 226 2011 10.1177/1468087411401548
  7. Benajes , J. , García , A. , Monsalve-Serrano , J. , and Lago , S.R. Fuel Consumption and Engine-Out Emissions Estimations of a Light-Duty Engine Running in Dual-Mode RCCI/CDC with Different Fuels and Driving Cycles Energy 157 19 30 2018 10.1016/j.energy.2018.05.144
  8. Benajes , J. , Molina , S. , García , A. , and Monsalve-Serrano , J. Effects of Direct Injection Timing and Blending Ratio on RCCI Combustion with Different Low Reactivity Fuels Energy Convers Manag 99 193 209 2015 10.1016/j.enconman.2015.04.046
  9. Benajes , J. , García , A. , Monsalve-Serrano , J. , and Sari , R. Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-out Emissions Appl Sci 8 1472 2018 10.3390/app8091472
  10. García , A. , Monsalve-Serrano , J. , Sari , R. , Dimitrakopoulos , N. et al. Performance and Emissions of a Series Hybrid Vehicle Powered by a Gasoline Partially Premixed Combustion Engine Appl Therm Eng 150 564 575 2019 10.1016/j.applthermaleng.2019.01.035
  11. Bradley , T.H. and Quinn , C.W. Analysis of Plug-In Hybrid Electric Vehicle Utility Factors J Power Sources 195 5399 5408 2010 10.1016/j.jpowsour.2010.02.082
  12. Plötz , P. , Funke , S.Á. , and Jochem , P. The Impact of Daily and Annual Driving on Fuel Economy and CO2emissions of Plug-In Hybrid Electric Vehicles Transp Res Part A Policy Pract 118 331 340 2018 10.1016/j.tra.2018.09.018
  13. Daramy-Williams , E. , Anable , J. , and Grant-Muller , S. A Systematic Review of the Evidence on Plug-In Electric Vehicle User Experience Transp Res Part D Transp Environ 71 22 36 2019 10.1016/j.trd.2019.01.008
  14. Favre , C. , Bosteels , D. , and May , J. Exhaust Emissions from European Market-Available Passenger Cars Evaluated on Various Drive Cycles SAE Technical Paper 2013-24-0154 2013 https://doi.org/10.4271/2013-24-0154
  15. Cubito , C. , Millo , F. , Boccardo , G. , Di Pierro , G. et al. Impact of Different Driving Cycles and Operating Conditions on CO 2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle Energies 10 2017 10.3390/en10101590
  16. Benajes , J. , García , A. , Monsalve-Serrano , J. , and Villalta , D. Exploring the Limits of the Reactivity Controlled Compression Ignition Combustion Concept in a Light-Duty Diesel Engine and the Influence of the Direct-Injected Fuel Properties Energy Convers Manag 157 277 287 2018 10.1016/j.enconman.2017.12.028
  17. Paffumi , E. , De Gennaro , M. , and Martini , G. Alternative Utility Factor Versus the SAE J2841 Standard Method for PHEV and BEV Applications Transp Policy 68 80 97 2018 10.1016/j.tranpol.2018.02.014
  18. 2009 https://doi.org/10.4271/J2841_200903
  19. Luján , J.M. , García , A. , Monsalve-Serrano , J. , and Martínez-Boggio , S. Effectiveness of Hybrid Powertrains to Reduce the Fuel Consumption and NOx Emissions of a Euro 6d-Temp Diesel Engine under Real-Life Driving Conditions Energy Convers Manag 199 111987 2019 10.1016/j.enconman.2019.111987
  20. Yang , Y. , Pei , H. , Hu , X. , Liu , Y. et al. Fuel Economy Optimization of Power Split Hybrid Vehicles: A Rapid Dynamic Programming Approach Energy 166 929 938 2019 10.1016/j.energy.2018.10.149
  21. Hall , D. and Lutsey , N. Effects of Battery Manufacturing on Electric Vehicle Life-Cycle Greenhouse Gas Emissions ICCT Brief 12 2018 10.1088/1748-9326/11/5/054010

Cited By