This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Study of the Maximum Impact on Engine Efficiency When Insulating the Engine Exhaust Manifold and Ports during Steady and Transient Conditions

Journal Article
2020-37-0002
ISSN: 2641-9645, e-ISSN: 2641-9645
Published June 30, 2020 by SAE International in United States
Numerical Study of the Maximum Impact on Engine Efficiency When Insulating the Engine Exhaust Manifold and Ports during Steady and Transient Conditions
Sector:
Citation: Broatch, A., Olmeda, P., Martin, J., and Dreif, A., "Numerical Study of the Maximum Impact on Engine Efficiency When Insulating the Engine Exhaust Manifold and Ports during Steady and Transient Conditions," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(1):661-671, 2021, https://doi.org/10.4271/2020-37-0002.
Language: English

References

  1. Hooftman , N. , Messagie , M. , Van Mierlo , J. , and Coosemans , T. A Review of the European Passenger Car Regulations - Real Driving Emissions vs local Air Quality Renewable and Sustainable Energy Reviews 2018
  2. Johnson , T. and Joshi , A. Review of Vehicle Engine Efficiency and Emissions SAE Int. J. Engines 11 6 1307 1330 2018 https://doi.org/10.4271/2019-01-0314
  3. Ko , J. , Jin , D. , Jang , W. , Myung , C.L. et al. Comparative Investigation of NOx Emission Characteristics from a Euro 6-Compliant Diesel Passenger Car Over the NEDC and WLTC at Various Ambient Temperatures Appl. Energy 2017
  4. Society , A.L. , Kosaka , H. , Wakisaka , Y. , Nomura , Y. , Hotta , Y. , and Koike , M. 2017
  5. Huber , R. , Klumpp , P. , and Ulbrich , H. Dynamic Analysis of the Audi Valvelift System SAE Int. J. Engines 3 1 839 849 2010 https://doi.org/10.4271/2010-01-1195
  6. Broatch , A. , Olmeda , P. , Margot , X. , and Gomez-Soriano , J. Numerical Simulations for Evaluating the Impact of Advanced Insulation Coatings on H2 Additivated Gasoline Lean Combustion in a Turbocharged Spark-Ignited Engine Appl. Therm. Eng. 2019
  7. Ekström , M. , Thibblin , A. , Tjernberg , A. , Blomqvist , C. , and Jonsson , S. Evaluation of Internal Thermal Barrier Coatings for Exhaust Manifolds Surf. Coatings Technol. 2015
  8. Luján , J.M. , Serrano , J.R. , Piqueras , P. , and Diesel , B. Turbine and Exhaust Ports Thermal Insulation Impact on the Engine Efficiency and Aftertreatment Inlet Temperature Appl. Energy 2019
  9. Holmer , O. and Eriksson , L. Modeling and Analytical Solutions for Optimal Heating of Aftertreatment Systems IFAC-PapersOnLine 2019
  10. Serrano , J. , Piqueras , P. , Navarro , R. , Gómez , J. et al. Modelling Analysis of Aftertreatment Inlet Temperature Dependence on Exhaust Valve and Ports Design Parameters SAE Technical Paper 2016-01-0670 2016 https://doi.org/10.4271/2016-01-0670
  11. Martin , J. , Arnau , F. , Piqueras , P. , and Auñon , A. Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles SAE Technical Paper 2018-01-1413 2018 https://doi.org/10.4271/2018-01-1413
  12. Arrègle , J. , López , J. , Martín , J. , and Mocholí , E. Development of a Mixing and Combustion Zero-Dimensional Model for Diesel Engines SAE Technical Paper 2006-01-1382 2006 https://doi.org/10.4271/2006-01-1382
  13. Payri , F. , Olmeda , P. , Martín , J. , and García , A. A Complete 0D Thermodynamic Predictive Model for Direct Injection Diesel Engines Applied Energy 88 12 4632 4641 2011 10.1016/j.apenergy.2011.06.005
  14. Payri , F. , Olmeda , P. , Martín , J. , and Carreño , R. A New Tool to Perform Global Energy Balances in DI Diesel Engines SAE Int. J. Engines 7 1 43 59 2014 https://doi.org/10.4271/2014-01-0665
  15. Torregrosa , A.J. , Olmeda , P. , Degraeuwe , B. , and Reyes , M. A Concise Wall Temperature Model for DI Diesel Engines Applied Thermal Engineering 26 11-12 1320 1327 2006 10.1016/j.applthermaleng.2005.10.021
  16. Payri , F. , Margot , X. , Gil , A. , and Martin , J. Computational Study of Heat Transfer to the Walls of a DI Diesel Engine SAE Technical Paper 2005-01-0210 2005 https://doi.org/10.4271/2005-01-0210
  17. Broatch , A. , Olmeda , P. , García , A. , Salvador-Iborra , J. , and Warey , A. Impact of Swirl on In-Cylinder Heat Transfer in a Light-Duty Diesel Engine Energy 119 1010 1023 2017 10.1016/j.energy.2016.11.040
  18. Dittus , F.W. and Boelter , L.M.K. Heat Transfer in Automobile Radiators of the Tubular Type International Communications in Heat and Mass Transfer 12 1 3 22 1985 10.1016/0735-1933(85)90003-X
  19. Bohac , S. , Baker , D. , and Assanis , D. A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies SAE Technical Paper 960073 1996 https://doi.org/10.4271/960073
  20. Payri , F. , Olmeda , P. , Arnau , F.J. , Dombrovsky , A. , and Smith , L. External Heat Losses in Small Turbochargers: Model and Experiments Energy 71 534 546 2014 10.1016/j.energy.2014.04.096
  21. Serrano , J.R. , Olmeda , P. , Arnau , F.J. , Reyes-Belmonte , M.A. , and Tartoussi , H. A Study on the Internal Convection in Small Turbochargers, Proposal of Heat Transfer Convective Coefficients Applied Thermal Engineering 89 587 599 2015 10.1016/j.applthermaleng.2015.06.053
  22. Payri , F. , Olmeda , P. , Martín , J. , and Carreño , R. A New Tool to Perform Global Energy Balances in DI Diesel Engines SAE Int. J. Engines 7 1 43 59 2014 https://doi.org/10.4271/2014-01-0665

Cited By