This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Simulation Methodology for Design and Development of Li-Ion Cell and Battery Pack
Technical Paper
2020-28-0009
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The thermal management of Li-ion Cell/battery pack during charging-discharging plays a significant role in the development of Electric Vehicles (EV’s). Higher heat generation with the increase in rate of charge-discharge leads to decrease in the life of li-ion cell drastically and increases the possibility of hazard. The present paper reports the methodology for optimizing the design of li-ion cell by performing the simulation to study the variation of potential difference, heat generation and temperature distribution across the cell on different charging- discharging cycles. These simulations lead to better cell design with lesser heat generation. The Computational Fluid Dynamics Analysis (CFDA) is performed for the thermal management of the battery pack for maximum heat dissipation. It is expected that this simulation methodology will provide an edge in the design of li-ion cell and battery packs with optimized performance and will ensure the safety.
Authors
Topic
Citation
Saxena, A., Rathore, G., Chauhan, A., and chawla, S., "Simulation Methodology for Design and Development of Li-Ion Cell and Battery Pack," SAE Technical Paper 2020-28-0009, 2020, https://doi.org/10.4271/2020-28-0009.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- Cedar , G. , Doyle , M. , Arora , P. , and Fuentes , Y. Computational Modeling and Simulation for Rechargeable Batteries MRS Bull. 619 623 2002 https://doi.org/10.1557/mrs2002.198
- Newman , J. , Thomas , K.E. , Hafezi , H. , and Wheeler , D.R. Modeling of Lithium-Ion Batteries J. Power Sources 119-121 838 2003 https://doi.org/10.1016/S0378-7753(03)00282-9
- Kim , G.H. and Pesaran , A. Battery Thermal Management Design Modeling The World Electric Vehicle Association Journal 1 2007
- Kim , G.H. , Smith , K. , Lee , K.J. , Santhagopalan , S. , and Pesaran , A. Multi-Domain Modeling of Lithium-Ion Batteries Encompassing
- Multi-Physics in Varied Length Scales Journal of The Electrochemical Society 158 A955 A969 2011 https://doi.org/10.1149/1.3597614
- Chen , Y. and Evans , J.W. Heat Transfer Phenomena in Lithium/Polymer-Electrolyte Batteries for Electric Vehicle Application J. Electrochem. Soc. 140 1833 1993
- Chen , Y. and Evans , J.W. Three-Dimensional Thermal Modeling of Lithium-Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile J. Electrochem. Soc. 141 2947 1994 https://doi.org/10.1149/1.2059263
- Chen , Y. and Evans , J.W. Thermal Analysis of Lithium-Ion Batteries J. Electrochem. Soc. 143 2708 1996 https://doi.org/10.1149/1.1837095
- Doyle , M. , Fuller , T.F. , and Newman , J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell J. Electrochem. Soc. 140 1526 1993
- Verbrugge , M.W. Three-Dimensional Temperature and Current Distribution in a Battery Module AIChE J. 41 1550 1995 https://doi.org/10.1002/aic.690410619
- Botte , G.G. , Johnson , B.A. , and White , R.E. Influence of Some Design Variables on the Thermal Behavior of a Lithium-Ion Cell J. Electrochem. Soc. 146 914 1999
- Song , L. and Evans , J.W. Electrochemical-Thermal Model of Lithium Polymer Batteries J. Electrochem. Soc. 147 2086 2000 https://doi.org/10.1149/1.1393490
- Al-Hallaj , S. , Maleki , H. , Hong , J.S. , and Selman , J.R. Thermal Modeling and Design Considerations of Lithium-Ion Batteries J. Power Sources 83 1 8 1999 https://doi.org/10.1016/S0378-7753(99)00178-0
- Srinivasan , V. and Wang , C.Y. Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells J. Electrochem. Soc. 150 A98 2003 https://doi.org/10.1149/1.1526512
- Chen , S.C. , Wan , C.C. , and Wang , Y.Y. Thermal Analysis of Lithium-Ion Batteries J. Power Sources 140 111 2005 https://doi.org/10.1016/j.jpowsour.2004.05.064
- Kim , U.S. , Shin , C.B. , and Kim , C.-S. Effect of Electrode Configuration on the Thermal Behavior of a Lithium-Polymer Battery J. Power Sources 180 909 2008 https://doi.org/10.1016/j.jpowsour.2007.09.054
- Kim , U.S. , Shin , C.B. , and Kim , C.-S. Modeling for the Scale-Up of a Lithium-Ion Polymer Battery J. Power Sources 189 841 2009 https://doi.org/10.1016/j.jpowsour.2008.10.019
- Kwon , K.H. , Shin , C.B. , Kang , T.H. , and Kim , C.-S. J. Power Sources 163 151 2006
- Tiedemann , W. and Newman , J. Battery Design and Optimization Gross , S. 79-1 Pennington, NJ 1979 39
- Newman , J. and Tiedemann , W. Potential and Current Distribution in Electrochemical Cells: Interpretation of the Half-Cell Voltage Measurements as a Function of Reference-Electrode Location J. Electrochem. Soc. 140 1961 1993 https://doi.org/10.1149/1.2220746
- Doyle , M. and Newman , J. The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems J. Power Sources 40 13-14 2191 2196 October 1995 https://doi.org/10.1016/0013-4686(95)00162-8
- Pals , C.R. and Newman , J. Thermal Modeling of the Lithium/Polymer Battery I Discharge Behavior of a Single Cell J. Electrochem. Soc. 142 3274 1995 https://doi.org/10.1149/1.2049974
- Kim , U.S. , Yi , J. , Shin , C.B. , Han , T. , and Park , S. Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature 158 A611 A618 2011 https://doi.org/10.1149/1.3565179
- Gu , H. Mathematical Analysis of a Zn / NiOOH Cell J. Electrochem. Soc. 130 1459 1983 https://doi.org/10.1149/1.2120009