This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advanced Combustion Modelling of High BMEP Engines under Water Injection Conditions with Chemical Correlations Generated with Detailed Kinetics and Machine Learning Algorithms

Journal Article
2020-01-2008
ISSN: 2641-9645, e-ISSN: 2641-9645
Published September 15, 2020 by SAE International in United States
Advanced Combustion Modelling of High BMEP Engines under Water Injection Conditions with Chemical Correlations Generated with Detailed Kinetics and Machine Learning Algorithms
Sector:
Citation: Pulga, L., Falfari, S., Bianchi, G., Ricci, M. et al., "Advanced Combustion Modelling of High BMEP Engines under Water Injection Conditions with Chemical Correlations Generated with Detailed Kinetics and Machine Learning Algorithms," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(1):77-94, 2021, https://doi.org/10.4271/2020-01-2008.
Language: English

References

  1. Falfari , S. , Bianchi , G.M. , Cazzoli , G. , Forte , C. , and Negro , S. Basics on Water Injection Process for Gasoline Engines Energy Procedia 50 57 2018 10.1016/j.egypro.2018.08.018
  2. Falfari , S. , Bianchi , G.M. , Cazzoli , G. , Ricci , M. et al. Water Injection Applicability to Gasoline Engines: Thermodynamic Analysis SAE Technical Paper 2019-01-0266 2019 https://doi.org/10.4271/2019-01-0266
  3. Cazzoli , G. , Bianchi , G.M. , Falfari , S. , and Forte , C. Development of a Chemical-Kinetic Database for the Laminar Flame Speed Under GDI and Water Injection Engine Conditions Energy Procedia 154 161 2018 10.1016/j.egypro.2018.08.043
  4. Cazzoli , G. , Bianchi , G.M. , Falfari , S. , Ricci , M. et al. Evaluation of Water and EGR Effects on Combustion Characteristics of GDI Engines Using a Chemical Kinetics Approach SAE Technical Paper 2019-24-0019 2019 https://doi.org/10.4271/2019-24-0019
  5. Berni , F. , Breda , S. , Lugli , M. , and Cantore , G. A Numerical Investigation on the Potentials of Water Injection to Increase Knock Resistance and Reduce Fuel Consumption in Highly Downsized GDI Engines Energy Procedia 826 835 2015 10.1016/j.egypro.2015.12.091
  6. d’Adamo , A. , Berni , F. , Breda , S. , Lugli , M. et al. A Numerical Investigation on the Potentials of Water Injection as a Fuel Efficiency Enhancer in Highly Downsized GDI Engines SAE Technical Paper 2015-01-0393 2015 https://doi.org/10.4271/2015-01-0393
  7. Battistoni , M. , Grimaldi , C. , Cruccolini , V. , Discepoli , G. et al. Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine through Multi-Cycle CFD Simulations SAE Technical Paper 2017-24-0034 2017 https://doi.org/10.4271/2017-24-0034
  8. Netzer , C. , Franken , T. , Seidel , L. , Lehtiniemi , H. et al. Numerical Analysis of the Impact of Water Injection on Combustion and Thermodynamics in a Gasoline Engine using Detailed Chemistry SAE Technical Paper 2018-01-0200 2018 https://doi.org/10.4271/2018-01-0200
  9. De Bellis , V. , Bozza , F. , Teodosio , L. , and Valentino , G. Experimental and Numerical Study of the Water Injection to Improve the Fuel Economy of a Small Size Turbocharged SI Engine SAE Int. J. Engines 10 2 550 561 2017 https://doi.org/10.4271/2017-01-0540
  10. Iacobacci , A. , Marchitto , L. , and Valentino , G. Water Injection to Enhance Performance and Emissions of a Turbocharged Gasoline Engine under High Load Condition SAE Int. J. Engines 10 3 928 937 2017 https://doi.org/10.4271/2017-01-0660
  11. Pulga , L. , Bianchi , G. , Ricci , M. , Cazzoli , G. et al. Development of a Novel Machine Learning Methodology for the Generation of a Gasoline Surrogate Laminar Flame Speed Database under Water Injection Engine Conditions SAE Int. J. Fuels Lubr. 13 1 2020 10.4271/04-13-01-0001
  12. Raut , A. , and Mallikarjuna , J. Effects of Water Injector Spray Angle and Injector Orientation on Emission and Performance of a GDI Engine—A CFD Analysis SAE Int. J. Engines 13 1 17 33 2020 10.4271/03-13-01-0002
  13. Gern , M.S. , Vacca , A. , and Bargende , M. Experimental Analysis of the Influence of Water Injection Strategies on DISI Engine Particle Emissions SAE Technical Paper 2019-24-0101 2019 https://doi.org/10.4271/2019-24-0101
  14. Vacca , A. , Bargende , M. , Chiodi , M. , Franken , T. et al. Analysis of Water Injection Strategies to Exploit the Thermodynamic Effects of Water in Gasoline Engines by Means of a 3D-CFD Virtual Test Bench SAE Technical Paper 2019-24-0102 2019 https://doi.org/10.4271/2019-24-0102
  15. Fandakov , A. , Grill , M. , Bargende , M. , and Kulzer , A.C. A Two-Stage Knock Model for the Development of Future SI Engine Concepts SAE Technical Paper 2018-01-0855 2018 https://doi.org/10.4271/2018-01-0855
  16. Fandakov , A. , Grill , M. , Bargende , M. , and Kulzer , A. Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock SAE Int. J. Engines 10 4 2017 10.4271/2017-24-0001
  17. Poinsot , T. , Veynante , D. 2001
  18. Dekena , M. , and Peters , N. Combustion Modeling with the G-Equation Oil Gas Sci. Technol. 54 265 270 1999
  19. Colin , O. , and Benkenida , A. The 3-Zone Extended Coherent Flame Model (ECFM3Z) for computing premixed/diffusion combustion Oil Gas Sci. Technol. -Rev. IFP 59 6 593 609
  20. Metghalchi , M. , and Keck , J. Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature Combustion and Flame 48 C 191 210 1982
  21. Cazzoli , G. , Forte , C. , Bianchi , G. , Falfari , S. , and Negro , S. A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines SAE Technical Paper 2017-24-0035 2017 https://doi.org/10.4271/2017-24-0035
  22. Pulga , L. , Bianchi , G.M. , Falfari , S.e. , and Forte , C. A Machine Learning Methodology for Improving the Accuracy of Laminar Flame Simulations with Reduced Chemical Kinetics Mechanisms Combustion and Flame 216 72 81 2020 https://doi.org/10.1016/j.combustflame.2020.02.021
  23. Pulga , L. , Bianchi , G. , Ricci , M. , Cazzoli , G. et al. Development of a Novel Machine Learning Methodology for the Generation of a Gasoline Surrogate Laminar Flame Speed Database under Water Injection Engine Conditions SAE Int. J. Fuels Lubr. 13 1 5 17 2020 https://doi.org/10.4271/04-13-01-0001
  24. Lin , H. , Zhao , P. , and Ge , H. A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress SAE Technical Paper 2019-01-0946 2019 https://doi.org/10.4271/2019-01-0946
  25. Van Rossum , G. May 1995
  26. http://www.cantera.org
  27. Jerzembeck , S. , Peters , N. , Pepiot-Desjardins , P. , Pitsch , H. Laminar Burning Velocities at High Pressure for Primary Eeference Fuels and Gasoline: Experimental and Numerical Investigation Combustion and Flame 156 2 2009 292 301 0010-2180 10.1016/j.combustflame.2008.11.009
  28. Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels International Journal of Chemical Kinetics 46 9 512 542 2014 10.1002/kin.20867
  29. Niemeyer , K.E. , and Sung , C.-J. On the Importance of Graph Search Algorithms for DRGEP-Based Mechanism Reduction Methods Combustion and Flame 158 8 1439 1443 2011 10.1016/j.combustflame.2010.12.010
  30. Niemeyer , K.E. , Sung , C.-J. , and Raju , M.P. Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph with Error Propagation and Sensitivity Analysis Combustion and Flame 157 9 1760 1770 2010 10.1016/j.combustflame.2009.12.022
  31. Mestas , P.O. , Clayton , P. , and Niemeyer , K.E. 2019 https://doi.org/10.5281/zenodo.3401549
  32. Zhu , J. , Zou , H. , Rosset , S. , Hastie , T. 2009
  33. Pedregosa , F. , Varoquaux , G. , Gramfort , A. , Michel , V. et al. Scikit-Learn: Machine Learning in Python Journal of Machine Learning Research 12 2825 2830 2011
  34. Chollet , F. , et al. 2015 https://keras.io
  35. Del Pecchia , M. , Breda , S. , D'Adamo , A. , Fontanesi , S. et al. Development of Chemistry-Based Laminar Flame Speed Correlation for Part-Load SI Conditions and Validation in a GDI Research Engine SAE Int. J. Engines 11 6 715 741 2018 10.4271/2018-01-0174
  36. Gauthier , B.M. , Davidson , D.F. , Hanson , R.K. Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures Combustion and Flame 139 4 2004 300 311 0010-2180 https://doi.org/10.1016/j.combustflame.2004.08.015
  37. Siokos , K. , He , Z. , and Prucka , R. Assessment of Model-Based Knock Prediction Methods for Spark-Ignition Engines SAE Technical Paper 2017-01-0791 2017 https://doi.org/10.4271/2017-01-0791
  38. Forte , C. , Corti , E. , Bianchi , G. , Falfari , S. et al. A RANS CFD 3D Methodology for the Evaluation of the Effects of Cycle By Cycle Variation on Knock Tendency of a High Performance Spark Ignition Engine SAE Technical Paper 2014-01-1223 2014 https://doi.org/10.4271/2014-01-1223

Cited By