This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Robust xEV Battery State-of-Charge Estimator Design Using a Feedforward Deep Neural Network

Journal Article
2020-01-1181
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
Robust xEV Battery State-of-Charge Estimator Design Using a Feedforward Deep Neural Network
Sector:
Citation: Vidal, C., Kollmeyer, P., Naguib, M., Malysz, P. et al., "Robust xEV Battery State-of-Charge Estimator Design Using a Feedforward Deep Neural Network," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(5):2872-2880, 2020, https://doi.org/10.4271/2020-01-1181.
Language: English

References

  1. Vidal , C. , Gross , O. , Gu , R. , Kollmeyer , P. , and Emadi , A. xEV Li-Ion Battery Low-Temperature Effects-Review IEEE Trans. Veh. Technol. 68 5 4560 4572 May 2019 10.1109/TVT.2019.2906487
  2. Haubmann , M. , Barroso , D. , Vidal , C. , Bruck , L. , and Emadi , A. A Novel Multi-Mode Adaptive Energy Consumption Minimization Strategy for P1-P2 Hybrid Electric Vehicle Architectures 2019 IEEE Transportation Electrification Conference and Expo (ITEC) 2019 1 6 10.1109/ITEC.2019.8790525
  3. Rifkin , J. The Zero Marginal Cost Society: The Internet of Things, the Collaborative Commons, and the Eclipse of Capitalism Macmillan 2014
  4. Falcini , F. , Lami , G. , and Costanza , A.M. Deep Learning in Automotive Software IEEE Softw. 34 3 56 63 2017 10.1109/MS.2017.79
  5. Chemali , E. , Kollmeyer , P.J. , Preindl , M. , and Emadi , A. State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach J. Power Sources 400 June 242 255 Oct. 2018 10.1016/j.jpowsour.2018.06.104
  6. Chemali , E. , Kollmeyer , P. , Preindl , M. , Ahmed , R. , and Emadi , A. Long Short-Term Memory-Networks for Accurate State of Charge Estimation of Li-Ion Batteries IEEE Trans. Ind. Electron. 65 8 2018 10.1109/TIE.2017.2787586
  7. Vidal , C. , Kollmeyer , P. , Chemali , E. , and Emadi , A. Li-Ion Battery State of Charge Estimation Using Long Short-Term Memory Recurrent Neural Network with Transfer Learning 2019 IEEE Transportation Electrification Conference and Expo (ITEC) 2019 1 6 10.1109/ITEC.2019.8790543
  8. Charkhgard , M. and Farrokhi , M. State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF IEEE Trans. Ind. Electron. 57 12 4178 4187 2010
  9. Alvarez , J.C. Support Vector Machines Used to Estimate the Battery State of Charge IEEE Trans. Power Electron. 28 12 5919 5926 2013
  10. Du , J. , Liu , Z. , and Wang , Y. State of Charge Estimation for Li-Ion Battery Based on Model from Extreme Learning Machine Control Eng. Pract. 26 1 11 19 2014 10.1016/j.conengprac.2013.12.014
  11. Shrestha , A. and Mahmood , A. Review of Deep Learning Algorithms and Architectures IEEE Access 7 53040 53065 2019 10.1109/ACCESS.2019.2912200
  12. Vidal , C. et al. Hybrid Energy Storage System State-of-Charge Estimation Using Artificial Neural Network For Micro-Hybrid Applications 2018 IEEE Transportation Electrification Conference and Expo (ITEC) 2018 1075 1081 10.1109/ITEC.2018.8450251
  13. Kollmeyer , P. , Vidal , C. , Naguib , M. , and Skells , M. 2020 10.17632
  14. Chaoui , H. and Ibe-Ekeocha , C.C. State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks IEEE Trans. Veh. Technol. 66 10 8773 8783 Oct. 2017 10.1109/TVT.2017.2715333
  15. Hannan , M.A. , Lipu , M.S.H.H. , Hussain , A. , Saad , M.H. , and Ayob , A. Neural Network Approach for Estimating State of Charge of Lithium-Ion Battery Using Backtracking Search Algorithm IEEE Access 6 c 10069 10079 2018 10.1109/ACCESS.2018.2797976

Cited By