This content is not included in your SAE MOBILUS subscription, or you are not logged in.

LiDAR Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN)

Journal Article
2020-01-0696
ISSN: 2641-9637, e-ISSN: 2641-9645
Published April 14, 2020 by SAE International in United States
LiDAR Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN)
Citation: Dabbiru, L., Goodin, C., Scherrer, N., and Carruth, D., "LiDAR Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN)," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(6):3288-3292, 2020, https://doi.org/10.4271/2020-01-0696.
Language: English

References

  1. Wu , B. , Wan , A. , Yue , X. , and Keutzer , K. Squeezeseg: Convolutional Neural Nets with Recurrent crf for Real-Time Road-Object Segmentation from 3d Lidar Point Cloud 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018 1887 1893
  2. Sun , C. , Shrivastava , A. , Singh , S. , and Gupta , A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era Proceedings of the IEEE International Conference on Computer Vision 2017 843 852
  3. Iandola , F.N. , Han , S. , Moskewicz , M.W. , Ashraf , K. , Dally , W.J. , and Keutzer , K. 2016
  4. Krizhevsky , A. , Sutskever , I. , and Hinton , G.E. Imagenet Classification with Deep Convolutional Neural Networks Advances in Neural Information Processing Systems 1097 1105 2012
  5. Wang , Y. , Shi , T. , Yun , P. , Tai , L. , and Liu , M. 2018
  6. Badrinarayanan , V. , Handa , A. , and Cipolla , R. 2015
  7. El Madawy , K. , Rashed , H. , El Sallab , A. , Nasr , O. , Kamel , H. , and Yogamani , S. 2019
  8. Geiger , A. , Lenz , P. , and Urtasun , R. Are We Ready for Autonomous Driving? The Kitti Vision Benchmark Suite Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE 2012 3354 3361
  9. Daniel , M. , Po-Wei , C. , Masashi , U. , and Sebastian , S. Real-Time Semantic Mapping for Autonomous Off-Road Navigation Springer Proceedings in Advanced Robotics 5 335 350 January, 2018
  10. Piewak , F. , Pinggera , P. , Schafer , M. , Peter , D. , Schwarz , B. , Schneider , N. , Enzweiler , M. , Pfeiffer , D. , and Zollner , M. Boosting Lidar-Based Semantic Labeling by Cross-Modal Training Data Generation Proceedings of the European Conference on Computer Vision (ECCV) 2018
  11. Goodin , C. , Carruth , D. , Doude , M. , and Hudson , C. Predicting the Influence of Rain on LIDAR in ADAS Electronics 8 1 89 2019
  12. Sharma , S. , Ball , J.E. , Tang , B. , Carruth , D.W. et al. Semantic Segmentation With Transfer Learning For Off-Road Autonomous Driving Sensors 19 11 2577 2019
  13. Kysar , S. , Chopp , D.J. , Kurup , A.M. , Rice , J. , Bos , J.P. , and Robinette , D. Localization and Mapping Performance of Two LiDAR Systems in Unstructured Environments Proc. SPIE 11009, Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2019 May 2, 2019 https://doi.org/10.1117/12.2521002
  14. Goodin , C. , Doude , M. , Hudson , C. , and Carruth , D. Enabling Off-Road Autonomous Navigation-Simulation of LIDAR in Dense Vegetation Electronics 7 9 154 2018
  15. Goodin , C. , Sharma , S. , Doude , M. , Carruth , D. et al. Training of Neural Networks with Automated Labeling of Simulated Sensor Data SAE Technical Paper 2019-01-0120 2019 https://doi.org/10.4271/2019-01-0120
  16. Mittet , M.A. , Nouira , H. , Roynard , X. , Goulette , F. , and Deschaud , J.-E. Experimental Assessment of the Quanergy m8 Lidar Sensor 2016
  17. Zhao , F. , Jiang , H. , and Liu , Z. Recent Development of Automotive LiDAR Technology, Industry and Trends Eleventh International Conference on Digital Image Processing (ICDIP 2019) 2019 111794A
  18. Wu , B. , Iandola , F. , Jin , P.H. , and Keutzer , K. Squeezedet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops 2017 129 137

Cited By