This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Frame Structure Durability Development Methodology for Various Design Phases
Technical Paper
2020-01-0196
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements.
Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process. Frame gauge optimization during the subsequent development phase (II) utilizing a newly developed damage based approach greatly reduced the number of design iterations relative to a typical stress based approach. In the light weighting phase (III) that followed, a method was established to effectively locate and optimize lightening holes using fatigue damage contours. In the final optimization phase (IV) custom Python® scripts were developed to optimize weld lengths at joints.
This whole framework provides a fast and efficient way to optimize a frame structure for durability.
Authors
Topic
Citation
Thandhayuthapani, C., Lin, B., Mao, J., Byali, R. et al., "Frame Structure Durability Development Methodology for Various Design Phases," SAE Technical Paper 2020-01-0196, 2020, https://doi.org/10.4271/2020-01-0196.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- Zhang , S. and Chen , A. A Practical Design Process to Optimize Fatigue Performance for Chassis Components SAE Technical Paper 2009-01-1227 2009 https://doi.org/10.4271/2009-01-1227
- Sohmshetty , R. and Mallela , K. Advanced High Strength Steels for Chassis Structures SAE Technical Paper 2008-01-0854 2008 https://doi.org/10.4271/2008-01-0854
- Sithik , M. , Vallurupalli , R. , Lin , B. , and Sudalaimuthu , S. Simplified Approach of Chassis Frame Optimization for Durability Performance SAE Technical Paper 2014-01-0399 2014 https://doi.org/10.4271/2014-01-0399
- Chen , G. , Guo , M. , and Zhang , W. Fatigue Based Lightweight Optimization of a Pickup Cargo Box with Advanced High Strength Steels SAE Int. J. Mater. Manf. 7 3 545 552 2014 http://dx.doi.org/10.4271/2014-01-0913
- Lin , B. , Bhat , R. , Zhang , S. , and Sykes-Green , T. A New Weight Reduction Lightening Holes Development Approach Based on Frame Durability Fatigue Performance SAE Technical Paper 2017-01-1348 2017 https://doi.org/10.4271/2017-01-1348
- Bhat , R. , Sharma , N. , Rivard , C. , and Thomson , K. Simplified Approach for Optimizing Lightening Holes in Truck Frames for Durability Performance SAE Technical Paper 2017-01-1345 2017 https://doi.org/10.4271/2017-01-1345
- ® ®