This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Communication-Free Human-Robot-Collaboration Approach for Aircraft Riveting Process Using AI Probabilistic Planning

Journal Article
2020-01-0013
ISSN: 2641-9637, e-ISSN: 2641-9645
Published March 10, 2020 by SAE International in United States
A Communication-Free Human-Robot-Collaboration Approach for Aircraft Riveting Process Using AI Probabilistic Planning
Sector:
Event: AeroTech
Citation: Rekik, K., Müller, R., Hoffmann, J., and Vette, M., "A Communication-Free Human-Robot-Collaboration Approach for Aircraft Riveting Process Using AI Probabilistic Planning," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(3):1160-1167, 2020, https://doi.org/10.4271/2020-01-0013.
Language: English

References

  1. Müller , R. , Vette-Steinkamp , M. , Kanso , A. , and Masiak , T. Collaboration in a Hybrid Team of Human and Robot for Improving Working Conditions in an Aircraft Riveting Process SAE Int. J. Adv. & Curr. Prac. in Mobility 1 2 396 403 2019 https://doi.org/10.4271/2019-01-1372
  2. Caggiano , A. , Marzano , A. , and Teti , R. Resource Efficient Configuration of an Aircraft Assembly Line Procedia CIRP 41 236 241 2016
  3. Xi , F.F. , Yu , L. , and Tu , X.W. Framework on Robotic Percussive Riveting for Aircraft Assembly Automation Advances in Manufacturing 1 2 112 122 2013
  4. Müller , R. , Vette , M. , Geenen , A. , and Masiak , T. Improving Working Conditions in Aircraft Productions Using Human-Robot-Collaboration in a Collaborative Riveting Process SAE Technical Paper 2017-01-2096 2017 https://doi.org/10.4271/2017-01-2096
  5. Campbell , F.C. Jr. Manufacturing Technology for Aerospace Structural Materials Elsevier 2011
  6. Hoffmann , J. Everything You Always Wanted to Know About Planning Annual Conference on Artificial Intelligence Berlin Springer 2011
  7. Hendler , J.A. , Tate , A. , and Drummond , M. AI Planning: Systems and Techniques AI Magazine 11 2 61 61 1990
  8. Bakker , B. , Zoran , Z. , and Ben , K. Hierarchical Dynamic Programming for Robot Path Planning 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems 2005
  9. Ramírez , M. and Hector , G. Goal Recognition over POMDPs: Inferring the Intention of a POMDP Agent Twenty-Second International Joint Conference on Artificial Intelligence 2011
  10. Koenig , S. and Reid , S. Xavier: A Robot Navigation Architecture Based on Partially Observable Markov Decision Process Models Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems Partially Cambridge MIT Press 1998 91 122
  11. Bandyopadhyay , T. , Kok , S.W. , Emilio , F. , David , H. et al. Intention-Aware Motion Planning Algorithmic Foundations of Robotics X Berlin Springer 2013 475 491
  12. Widyotriatmo , A. and Keum-Shik , H. Decision Making Framework for Autonomous Vehicle Navigation 2008 SICE Annual Conference 2008
  13. Müller , R. , Vette , M. , Masiak , T. , Duppe , B. et al. Intelligent Real Time Inspection of Rivet Quality Supported by Human-Robot-Collaboration SAE Technical Paper 2019-01-1886 2019 https://doi.org/10.4271/2019-01-1886
  14. Premium Aerotec GmbH www.premium-aerotec.com
  15. Karami , A.-B. 2011
  16. Pitt , L.D. A Markov Property for Gaussian Processes with a Multidimensional Parameter Archive for Rational Mechanics and Analysis 43 5 367 391 1971
  17. Puterman , M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming John Wiley & Sons 2014
  18. Keller , T. and Patrick , E. PROST: Probabilistic Planning Based on UCT Twenty-Second International Conference on Automated Planning and Scheduling 2012
  19. Silver , D. and Veness , J. Monte-Carlo Planning in Large POMDPs Advances in Neural Information Processing Systems 2 2164 2172 2010

Cited By