This content is not included in your SAE MOBILUS subscription, or you are not logged in.

High Efficiency by Miller Valve Timing and Stoichiometric Combustion for a Naturally Aspirated Single Cylinder Gas Engine

Journal Article
2019-32-0588
ISSN: 2641-9637, e-ISSN: 2641-9645
Published January 24, 2020 by Society of Automotive Engineers of Japan in Japan
High Efficiency by Miller Valve Timing and Stoichiometric Combustion for a Naturally Aspirated Single Cylinder Gas Engine
Sector:
Citation: Judith, J., Neher, D., Kettner, M., Schwarz, D. et al., "High Efficiency by Miller Valve Timing and Stoichiometric Combustion for a Naturally Aspirated Single Cylinder Gas Engine," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(2):1041-1057, 2020.
Language: English

References

  1. Albrecht, K. and Pinchbeck, D. , “Admissible Hydrogen Concentrations in Natural Gas Systems,” ISSN 2192-158X, 2013.
  2. Naturalhy Project Consortium , “Using the Existing Natural Gas System for Hydrogen: Preparing for the Hydrogen Economy by Using the Existing Natural Gas System as a Catalyst,” Project Contract No.: SES6/CT/2004/502661, 2009.
  3. Florisson, O. , “NATURALHY: Assessing the potential of the existing natural gas network for hydrogen delivery,” GERG Academic Network Event, Brussels, June 4, 2010.
  4. Melaina, M.W., Antonia, O., and Penev, M. , “Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues,” NREL/TP-5600-51995, 2013.
  5. United Nations Framework Convention on Climate Change , “Paris Agreement,” 2015.
  6. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit , “Technische Anleitung zur Reinhaltung der Luft: TA Luft,” 2002.
  7. Europäische Union , “Anforderung an die umweltgerechte Gestaltung von Raumheizgeräten und Kombiheizgeräten,” EU Verordnung 813/2013, 2013.
  8. Deutscher Bundestag , “Verordnung zur Einführung der Verordnung über mittelgroße Feuerungs-, Gasturbinen-und Verbrennungsmotoranlagen sowie zur Änderung der Verordnung über kleine und mittlere Feuerungsanlagen - Drucksache 19/4080,” 2018.
  9. Deutscher Bundesrat , “Verordnung zur Einführung der Verordnung über mittelgroße Feuerungs-, Gasturbinen-und Verbrennungsmotoranlagen sowie zur Änderung der Verordnung über kleine und mittlere Feuerungsanlagen - Drucksache 551/18 (neu),” 2018.
  10. Scholl, F., Gerisch, P., Neher, D., Kettner, M. et al. , “Development of a NOx Storage-Reduction Catalyst Based Min-NOx Strategy for Small-Scale NG-Fueled Gas Engines,” SAE Int. J. Fuels Lubr. 9(3), 2016, doi:https://doi.org/10.4271/2016-32-0072.
  11. Klinkner, M. , “Neue Schadstoffgrenzwerte und deren Bedeutung für Gasmotoren-BHKW,” InterCogen Karlsruhe, June 27, 2018.
  12. Saanum, I., Bysveen, M., Tunestal, P., and Johansson, B. , “Lean Burn Versus Stoichiometric Operation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas,” SAE Technical Paper 2007-01-0015 , 2007, doi:https://doi.org/10.4271/2007-01-0015.
  13. Nellen, C. and Boulouchos, K. , “Natural Gas Engines for Cogeneration: Highest Efficiency and Near-Zero- Emissions through Turbocharging, EGR and 3-Way Catalytic Converter,” SAE Technical Paper 2000-01-2825 , 2000, doi:https://doi.org/10.4271/2000-01-2825.
  14. Einewall, P., Tunestal, P., and Johansson, B. , “Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and a Three Way Catalyst,” SAE Technical Paper 2005-01-0250 , 2005, doi:https://doi.org/10.4271/2005-01-0250.
  15. Miller, R. , “Supercharging and Internal Cooling Cycle for High Output,” Transactions of ASME 69:453-457, 1947.
  16. Miller, R. , “High Expansion, Spark Ignited, Gas Burning, Internal Combustion Engines,” US2773490 A, 1956.
  17. Mikalsen, R., Wang, Y.D., and Roskilly, A.P. , “A Comparison of Miller and Otto Cycle Natural Gas Engines for Small Scale CHP Applications,” Applied Energy 86:922-927, 2009.
  18. Neher, D. , “Miller Cycle and Exhaust Gas Recirculation for a Naturally Aspirated Lean Burn Gas Engine,” Ph.D. Thesis, University of Valladolid & Karlsruhe University of Applied Sciences, 2017.
  19. Löbbert, P. , “Möglichkeiten und Grenzen der Teillaststeuerung von Ottomotoren mit vollvariablem Ventilhub, Ph.D. Thesis, TU Dresden, 2006.
  20. Scheidt, M., Brands, C., Kratzsch, M., and Günther, M. , “Kombinierte Miller-Atkinson-Strategie für Downsizing-Konzepte,” MTZ Motortechnische Zeitschrift 75(5):14-20, 2014.
  21. Elsner, N., Günther, M., Spannaus, T., Scheidt, M. et al. , “Brennverfahrensaspekte bei Realisierung einer Miller-/Atkinson-Strategie am Downsizing-Konzept,” 7. MTZ-Fachtagung Ladungswechsel im Verbrennungsmotor, 2014.
  22. Fuchs, J., Leitner, A., Tinschmann, G., and Trapp, C. , “Konzept für direkt gezündete Gross-Gasmotoren,” MTZ Motortechnische Zeitschrift 74(5):386-391, 2013.
  23. Endo, H., Tanaka, K., and Kakuhama, Y. , “Development of the Lean Burn Miller Cycle Gas Engine: Engines,” in The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion, 2001, 374-381.
  24. Bauer, M., Auer, M., and Stiesch, G. , “Das Brennverfahren des Gasmotors 20V35-44G von MAN,” MTZ Motortechnische Zeitschrift, 04 2013.
  25. Schutting, E., Dumböck, O., Kraxner, T., and Eichlseder, H. , “Thermodynamic Consideration of the Miller Cycle on the Basis of Simulation and Measurements,” Internationaler Motorenkongress 2016, 2016.
  26. Heywood, J. , Internal Combustion Engine Fundamentals (McGraw-Hill, 1988), ISBN 0-07-028637-X.
  27. He, X., Durrett, R., and Sun, Z. , “Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level,” SAE Int. J. Engines 1(1):427-443, 2008, doi:https://doi.org/10.4271/2008-01-0637.
  28. Koehler, I., Blei, I., Broda, A., and Eilts, P. , “Theoretische Betrachtung und Bewertung von Ladungswechselkenngrößen aktueller und zukünftiger Variabilitäten,” 4. MTZ-Fachtagung Ladungswechsel im Verbrennungsmotor, 2011.
  29. Fukuzawa, Y., Shimoda, H., Kakuhama, Y., Endo, H. et al. , “Development of High Efficiency Miller Cycle Gas Engine,” Mitsubishi Heavy Industries 38(3):146-150, 2001.
  30. Judith, J., Neher, D., Kettner, M., Schwarz, D. et al. , “Simulationsgestützte Entwicklung eines stöchiometrischen Brennverfahrens mit Miller- Steuerzeiten für einen gemischansaugenden Einzylinder-Erdgasmotor,” in Proceedings of the 11th Dessau Gas Engine Conference, 320-335, 2019.
  31. Judith, J., Neher, D., Kettner, M., Schwarz, D. et al. , “Entwicklung und Untersuchung eines Brennverfahrens mit erweiterter Expansion über den Ventiltrieb für stationäre Gasmotoren: Miller-Lambda1,” AZ 32875/01-24/0, 2018.
  32. Woschni, G. and Huber, K. , “The Influence of Soot Deposits on Combustion Chamber Walls on Heat Losses in Diesel Engines,” SAE Technical Paper 910297 , 1991, doi:https://doi.org/10.4271/910297.
  33. Hanjalic, K., Popovac, M., and Hadziabdic, M. , “A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity,” International Journal of Heat and Fluid Flow 1047-1051, 2004.
  34. Hanjalic, K. and Popovac, M. , “Compound Wall Treatment for RANS Computation of Complex Turbulent Flows and Heat Transfer,” Flow Turbulence Combustion 78:177-202, 2007.

Cited By