This content is not included in your SAE MOBILUS subscription, or you are not logged in.

One-Dimensional Modeling of a Thermochemical Recuperation Scheme for Improving Spark-Ignition Range Extender Engine Efficiency

Journal Article
2019-24-0066
ISSN: 2641-9645, e-ISSN: 2641-9645
Published September 09, 2019 by SAE International in United States
One-Dimensional Modeling of a Thermochemical Recuperation Scheme for Improving Spark-Ignition Range Extender Engine Efficiency
Sector:
Citation: Northrop, W. and Zarling, D., "One-Dimensional Modeling of a Thermochemical Recuperation Scheme for Improving Spark-Ignition Range Extender Engine Efficiency," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(2):543-550, 2020, https://doi.org/10.4271/2019-24-0066.
Language: English

References

  1. Aasberg-Petersen , K. , Bak Hansen , J. H. , Christensen , T. S. , Dybkjaer , I. et al. Technologies for Large-Scale Gas Conversion Applied Catalysis A: General 221 1-2 379 387 2001 10.1016/S0926-860X(01)00811-0
  2. Tartakovsky , L. and Sheintuch , M. Fuel Reforming in Internal Combustion Engines Progress in Energy and Combustion Science 67 88 114 2018 10.1016/j.pecs.2018.02.003
  3. Ekoto , I. , Peterson , B. , Szybist , J. , and Northrop , W. Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion SAE Int J. Engines 8 5 2015 10.4271/2015-24-2451
  4. Cao , L. , Zhao , H. , and Jiang , X. Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections 2007 724 776 790 2007 10.4271/2007-01-0211
  5. Urushihara , T. , Hiraya , K. , Kakuhou , A. , and Itoh , T. Expansion of HCCI Operating Region by the Combination of Direct Fuel Injection, Negative Valve Overlap and Internal Fuel Reformation SAE Transactions 112 1092 1100 2003 10.4271/2003-01-0749
  6. Szybist , J. P. , Steeper , R. R. , Splitter , D. , Kalaskar , V. B. et al. Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments SAE Int J. Engines 7 1 418 433 2014 10.4271/2014-01-1188
  7. Chadwell , C. , Alger , T. , Zuehl , J. , and Gukelberger , R. A Demonstration of Dedicated EGR on a 2.0 L GDI Engine SAE Int. J. Engines 7 1 2014 10.4271/2014-01-1190
  8. Lee , S. , Ozaki , K. , Iida , N. , and Sako , T. A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission SAE Int J. Engines 8 1 2014 10.4271/2014-32-0108
  9. Kalaskar , V. B. , Gukelberger , R. , Denton , B. , and Briggs , T. The Impact of Engine Operating Conditions on Reformate Production in a D-EGR Engine SAE Technical Paper 2017-01-0684 2017 10.4271/2017-01-0684
  10. Randolph , E. , Gukelberger , R. , Alger , T. , Briggs , T. et al. Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR ® Engine Configurations SAE Int. J. Fuels Lubr. 10 3 718 727 2017 10.4271/2017-01-2285
  11. Chang , Y. , Szybist , J. P. , Pihl , J. A. , and Brookshear , D. W. Catalytic Exhaust Gas Recirculation-Loop Reforming for High Energy & Fuels 32 2257 2266 2018 10.1021/acs.energyfuels.7b02565
  12. Szybist , J. P. , Pihl , J. , Huff , S. , Kaul , B. , and Ridge , O. High Load Expansion of Catalytic EGR-Loop Reforming under Stoichiometric Conditions for Increased Efficiency in Spark Ignition Engines SAE Technical Paper 2019-01-0244 2019 10.4271/2019-01-0244
  13. Voice , A. K. and Costanzo , V. Fuel and Engine Effects on Rich-Combustion Products as an Enabler of In-Cylinder Reforming SAE Technical Paper 2019-01-1144 2019 10.4271/2019-01-1144
  14. Brookshear , D. W. , Pihl , J. A. , and Szybist , J. P. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines Energy and Fuels 32 2267 2281 2018 10.1021/acs.energyfuels.7b02576
  15. Chuahy , F. D. F. and Kokjohn , S. L. High Efficiency Dual-Fuel Combustion through Thermochemical Recovery and Diesel Reforming Applied Energy 195 503 522 2017 10.1016/j.apenergy.2017.03.078
  16. Hwang , J. , Li , X. , and Northrop , W. Exploration of Dual Fuel Diesel Engine Operation with On-Board Fuel Reforming SAE Technical Paper 2017-01-0757 2017 10.4271/2017-01-0757
  17. Hwang , Jeffrey T. , Kane , S. P. , and Northrop , W. F. Hydrous Ethanol Steam Reforming and Thermochemical Recuperation to Improve Dual-Fuel Diesel Engine Emissions and Efficiency Proceedings of the ASME 2018 Internal Combustion Engine Division Fall Technical Conference ICEF2018-9 2018
  18. Lau , C. S. , Allen , D. , Tsolakis , A. , Golunski , S. E. , and Wyszynski , M. L. Biogas Upgrade to Syngas through Thermochemical Recovery Using Exhaust Gas Reforming Biomass and Bioenergy 40 86 95 2012 10.1016/j.biombioe.2012.02.004
  19. Adesina , A. A. , Trimm , D. L. , and Cant , N. W. Kinetic Study of Iso-Octane Steam Reforming over a Nickel-Based Catalyst Chemical Engineering Journal 99 131 136 2004 10.1016/j.cej.2003.10.002
  20. Changwei , J. , Yan , H. , and Wang , S. Simulation Study on Combustion Characteristics of a Spark Ignition Engine Fueled with Gasoline - Hydrogen Fuel Mixture SAE Technical Paper 2009-24-0093 2009 10.4271/2009-24-0093

Cited By