This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library
Technical Paper
2019-24-0020
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The Computational Chemistry Consortium (C3) is dedicated to leading the advancement of combustion and emissions modeling. The C3 cluster combines the expertise of different groups involved in combustion research aiming to refine existing chemistry models and to develop more efficient tools for the generation of surrogate and multi-fuel mechanisms, and suitable mechanisms for CFD applications. In addition to the development of more accurate kinetic models for different components of interest in real fuel surrogates and for pollutants formation (NOx, PAH, soot), the core activity of C3 is to develop a tool capable of merging high-fidelity kinetics from different partners, resulting in a high-fidelity model for a specific application. A core mechanism forms the basis of a gasoline surrogate model containing larger components including n-heptane, iso-octane, n-dodecane, toluene and other larger hydrocarbons. Moreover, poly-aromatic hydrocarbon modules are developed in addition to a NOx formation module. This work describes the challenges and approach for merging the different modules, discussing and analyzing the results from the model, obtained by comparing with experimental targets typically used for model validation (i.e. ignition delay times, laminar flame speed, species measurements in ideal reactors and flames). The case study here focuses on a gasoline TPRF surrogate, obtained by merging the kinetic modules of the disparate chemistry including hydrocarbon (alkene, alkane, aromatic and PAH species) and NOx chemistry. In addition, this work also describes the effort towards using these mechanisms for practical CFD simulations.
Recommended Content
Journal Article | Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach |
Technical Paper | Numerical Study of Combustion Processes and Pollutant Formation in HSDI Diesel Engines |
Authors
- Matteo Pelucchi - Politecnico di Milano
- Warumporn Pejpichestakul - Politecnico di Milano
- Marco Mehl - Politecnico di Milano
- Tiziano Faravelli - Politecnico di Milano
- Liming Cai - RWTH Aachen Univ
- Rupali Tripathi - RWTH Aachen Univ
- Heinz Pitsch - RWTH Aachen Univ
- Scott Wagnon - Lawrence Livermore National Lab
- William Pitz - Lawrence Livermore National Lab
- Henry Curran - National University of Ireland Galway
- Kuiwen Zhang - Convergent Science Inc.
- Mandhapati Raju - Convergent Science Inc.
- Peter Kelly Senecal - Convergent Science Inc.
Topic
Citation
Pelucchi, M., Cai, L., Pejpichestakul, W., Tripathi, R. et al., "Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library," SAE Technical Paper 2019-24-0020, 2019, https://doi.org/10.4271/2019-24-0020.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Curran , H. J. Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion Proceedings of the Combustion Institute 37 57 81 2019
- Pelucchi , M. , Stagni , A. , and Faravelli , T. Addressing the Complexity of Combustion Kinetics: Data Management and Automatic Model Validation Mathematical Modelling of Gasphase Complex Reaction Systems: Pyrolysis and Combustion 2019
- Senecal , K. https://fuelmech.org/team
- Faravelli , T. , Ranzi , E. , Frassoldati , A. , Cuoci , A. , Mehl , M. , Pelucchi , M. , Stagni , A. , and Cavallotti , C. creckmodeling.chem.polimi.it
- Metcalfe , W. K. , Burke , S. M. , Ahmed , S. S. , and Curran , H. J. A Hierarchical and Comparative Kinetic Modeling Study of C1− C2 Hydrocarbon and Oxygenated Fuels International Journal of Chemical Kinetics 45 638 675 2013
- Burke , S. M. , Burke , U. , Mc Donagh , R. , Mathieu , O. et al. An Experimental and Modeling Study of Propene Oxidation. Part 2: Ignition Delay Time and Flame Speed Measurements Combustion and Flame 162 296 314 2015
- Li , Y. , Zhou , C.-W. , and Curran , H. J. An Extensive Experimental and Modeling Study of 1-Butene Oxidation Combustion and Flame 181 198 213 2017
- Zhou , C.-W. , Li , Y. , Burke , U. , Banyon , C. et al. An Experimental and Chemical Kinetic Modeling Study of 1, 3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements Combustion and Flame 197 423 438 2018
- Li , Y. , Zhou , C.-W. , Somers , K. P. , Zhang , K. , and Curran , H. J. The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison with Isobutene and 1-Butene Proceedings of the Combustion Institute 36 403 411 2017
- Goldsmith , C. F. , Magoon , G. R. , and Green , W. H. Database of Small Molecule Thermochemistry for Combustion The Journal of Physical Chemistry A 116 9033 9057 2012
- Petersen , E. L. 1999
- Dagaut , P. , Luche , J. , and Cathonnet , M. Reduction of NO by Propane in a JSR at 1 Atm: Experimental and Kinetic Modeling Fuel 80 979 986 2001
- Benson , S. W. , Cruickshank , F. , Golden , D. , Haugen , G. R. et al. Additivity Rules for the Estimation of Thermochemical properties Chemical Reviews 69 279 324 1969
- Zhang , K. , Banyon , C. , Bugler , J. , Curran , H. J. et al. An Updated Experimental and Kinetic Modeling Study of N-Heptane Oxidation Combustion and Flame 172 116 135 2016
- Atef , N. , Kukkadapu , G. , Mohamed , S. Y. , Al Rashidi , M. et al. A Comprehensive Iso-Octane Combustion Model with Improved Thermochemistry and Chemical Kinetics Combustion and Flame 178 111 134 2017
- Kukkadapu , G. , Kang , D. , Wagnon , S. W. , Zhang , K. et al. Kinetic Modeling Study of Surrogate Components for Gasoline, Jet and Diesel Fuels: C7-C11 Methylated Aromatics Proceedings of the Combustion Institute 37 521 529 2019
- Chen , D. , Wang , K. , and Wang , H. Violation of Collision Limit in Recently Published Reaction Models Combustion and Flame 186 208 210 2017
- Killingsworth , N. , McNenly , M. , Whitesides , R. , Epshteyn , A. , and Consolati , J. 2017 https://combustiontools.llnl.gov/
- McBride , B. J. , Gordon , S. , and Reno , M. A. 1993
- Mehl , M. , Pitz , W. J. , Westbrook , C. K. , and Curran , H. J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions Proceedings of the Combustion Institute 33 193 200 2011
- Ciezki , H. and Adomeit , G. Shock-Tube Investigation of Self-Ignition of N-Heptane-Air Mixtures under Engine Relevant Conditions Combustion and Flame 93 421 433 1993
- Zhang , Y. , Somers , K. P. , Mehl , M. , Pitz , W. J. et al. Probing the Antagonistic Effect of Toluene as a Component in Surrogate Fuel Models at Low Temperatures and High Pressures. A Case Study of Toluene/Dimethyl Ether Mixtures Proceedings of the Combustion Institute 36 413 421 2017
- Javed , T. , Lee , C. , AlAbbad , M. , Djebbi , K. et al. Ignition Studies of N-Heptane/Iso-Octane/Toluene Blends Combustion and Flame 171 223 233 2016
- Wang , H. and Frenklach , M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames Combustion and Flame 110 173 221 1997
- Mebel , A. M. , Georgievskii , Y. , Jasper , A. W. , and Klippenstein , S. J. Temperature-and Pressure-Dependent Rate Coefficients for the HACA Pathways from Benzene to Naphthalene Proceedings of the Combustion Institute 36 919 926 2017
- Pejpichestakul , W. , Ranzi , E. , Pelucchi , M. , Frassoldati , A. et al. Examination of a Soot Model in Premixed Laminar Flames at Fuel-Rich Conditions Proceedings of the Combustion Institute 37 1013 1021 2019
- Wang , K. , Villano , S. M. , and Dean , A. M. Experimental and Kinetic Modeling Study of Butene Isomer Pyrolysis: Part II. Isobutene Combustion and Flame 176 23 37 2017
- Wang , K. , Villano , S. M. , and Dean , A. M. Fundamentally-Based Kinetic Model for Propene Pyrolysis Combustion and Flame 162 4456 4470 2015
- Wang , K. , Villano , S. M. , and Dean , A. M. Reactions of Allylic Radicals that Impact Molecular Weight Growth Kinetics Physical Chemistry Chemical Physics 17 6255 6273 2015
- Wang , K. , Villano , S. M. , and Dean , A. M. Experimental and Kinetic Modeling Study of Butene Isomer Pyrolysis: Part I. 1-and 2-Butene Combustion and Flame 173 347 369 2016
- Blanquart , G. , Pepiot-Desjardins , P. , and Pitsch , H. Chemical Mechanism for High Temperature Combustion of Engine Relevant Fuels with Emphasis on Soot Precursors Combustion and Flame 156 588 607 2009
- Narayanaswamy , K. , Blanquart , G. , and Pitsch , H. A consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species Combustion and Flame 157 1879 1898 2010
- Böhm , H. , Lamprecht , A. , Atakan , B. , and Kohse-Höinghaus , K. Modelling of a Fuel-Rich Premixed Propene-Oxygen-Argon Flame and Comparison with Experiments Physical Chemistry Chemical Physics 2 4956 4961 2000
- Shao , C. , Wang , H. , Atef , N. , Wang , Z. et al. Polycyclic Aromatic Hydrocarbons in Pyrolysis of Gasoline Surrogates (N-Heptane/Iso-Octane/Toluene) Proceedings of the Combustion Institute 37 993 1001 2019
- Ranzi , E. , Faravelli , T. , Gaffuri , P. , and Sogaro , A. Low-Temperature Combustion: Automatic Generation of Primary Oxidation Reactions and Lumping Procedures Combustion and Flame 102 179 192 1995
- Ranzi , E. , Faravelli , T. , Gaffuri , P. , Sogaro , A. et al. A Wide-Range Modeling Study of Iso-Octane Oxidation Combustion and Flame 108 24 42 1997
- Pelucchi , M. , Bissoli , M. , Cavallotti , C. , Cuoci , A. et al. Improved Kinetic Model of the Low-Temperature Oxidation of N-Heptane Energy & Fuels 28 7178 7193 2014
- Pelucchi , M. , Cavallotti , C. , Faravelli , T. , and Klippenstein , S. H-Abstraction Reactions by OH, HO2, O, O2 and Benzyl Radical Addition to O 2 and their Implications for Kinetic Modelling of Toluene Oxidation Physical Chemistry Chemical Physics 2018
- Cai , L. and Pitsch , H. Optimized Chemical Mechanism for Combustion of Gasoline Surrogate Fuels Combustion and Flame 162 1623 1637 2015
- Cai , L. , Pitsch , H. , Mohamed , S. Y. , Raman , V. et al. Optimized Reaction Mechanism Rate Rules for Ignition of Normal Alkanes Combustion and Flame 173 468 482 2016
- Cuoci , A. , Frassoldati , A. , Faravelli , T. , and Ranzi , E. OpenSMOKE++: An Object-Oriented Framework for the Numerical Modeling of Reactive Systems with Detailed Kinetic Mechanisms Computer Physics Communications 192 237 264 2015
- Cavallotti , C. , Derudi , M. , and Rota , R. On the Mechanism of Decomposition of the Benzyl Radical Proceedings of the Combustion Institute 32 115 121 2009
- Cavallotti , C. , Polino , D. , Frassoldati , A. , and Ranzi , E. Analysis of Some Reaction Pathways Active during Cyclopentadiene Pyrolysis The Journal of Physical Chemistry A 116 3313 3324 2012
- Raju , M. , Wang , M. , Dai , M. , Piggott , W. , and Flowers , D. Acceleration of Detailed Chemical Kinetics Using Multi-zone Modeling for CFD in Internal Combustion Engine Simulations SAE Technical Paper 2012-01-0135 2012 2012 10.4271/2012-01-0135
- Raju , M. , Wang , M. , Dai , M. , Quan , S. , Senecal , P. K. , Som , S. , McNenly , M. , and Flowers , D. L. Towards Accommodating Comprehensive Chemical Reaction Mechanisms in Practical Internal Combustion Engine Simulations 8th National Combustion Meeting May 19-22, 2013
- Raju , M. Wang , M. Senecal , P. K. , Som , S. , and Longman , D. E. A Reduced Diesel Surrogate Mechanism for Compression Ignition Engine Applications ASME Internal Combustion Engine Division Fall Technical Conference, ASME 2012 Internal Combustion Engine Division Fall Technical Conference 711 722 10.1115/ICEF2012-92045
- Raju , M. , Wang , M. , and Senecal , P. Dynamic Chemical Mechanism Reduction for Internal Combustion Engine Simulations SAE Technical Paper 2013-01-1110 2013 10.4271/2013-01-1110
- Goodwin , D. G. , Moffat , H. K. , and Speth , R. L. Cantera: An object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes http://www.cantera.org 2017