This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Modelling Pressure Losses in Gasoline Particulate Filters in High Flow Regimes and Temperatures
Technical Paper
2019-01-2330
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
This study presents a one-dimensional model for the prediction of the pressure loss across a wall-flow gasoline particulate filter (GPF). The model is an extension of the earlier models of Bissett [1] and Konstandopoulos and Johnson [2] to the turbulent flow regime, which may occur at high flow rates and temperatures characteristic of gasoline engine exhaust. A strength of the proposed model is that only one parameter (wall permeability) needs to be calibrated. An experimental study of flow losses for cold and hot flow is presented, and a good agreement is demonstrated. Unlike zero-dimensional models, this model provides information about the flow along the channels and thus can be extended for studies of soot and ash accumulation, heat transfer and reaction kinetics.
Authors
Citation
Prantoni, M., Aleksandrova, S., Medina, H., Saul, J. et al., "Modelling Pressure Losses in Gasoline Particulate Filters in High Flow Regimes and Temperatures," SAE Technical Paper 2019-01-2330, 2019, https://doi.org/10.4271/2019-01-2330.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] | ||
[Unnamed Dataset 2] | ||
[Unnamed Dataset 3] | ||
[Unnamed Dataset 4] |
Also In
References
- Bissett, E.J. , “Mathematical Model of the Thermal Regeneration of a wall-flow monolith diesel particulate filter,” Chemical Engineering Science 39: 1233-1244, 1984, doi:10.1016/0009-2509(84)85084-8
- Konstandopoulos, A.G. and Johnson, H. , “Wall-Flow Diesel Particulate Filters – Their Pressure Drop and Collection Efficiency,” SAE Technical Paper 890405, 1989, doi:10.4271/890405
- Konstandopoulos, A.G. , Skaperdas, E. and Masoudi, M. , “Inertial Contributions to the Pressure Drop of Diesel Particulate Filters,” SAE Technical Paper 2001-01-0909, 2001, doi:10.4271/2001-01-0909
- Konstandopoulos, A.G. , “Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing,” SAE Technical Paper 2003-01-0846, 2003, doi:10.4271/2003-01-0846
- Haralampous, G.A. , Kandylas, I. P., Koltsakis, G.S. and Samaras, Z.C. , “Diesel Particulate Filter Pressure Drop. Part 1: Modelling and Experimental Validation,” International Journal of Engine Research 5(2): 149-162, 2004, doi:10.1243/146808704773564550
- Masoudi, M. , Heible, A. and Then, P.M. , "Predicting Pressure Drop of Wall-Flow Diesel Particulate filters - theory and experiment,” SAE Technical Paper 2000-01-0184 , 2000, doi:10.4271/2000-01-0184
- Piscaglia, F. and Ferrari, G. , “A Novel 1D Approach for the Simulation of Unsteady Reacting Flows in Diesel Exhaust After-Treatment Systems,” Energy 34(12): 2051-2062, 2009, doi:10.1016/j.energy.2008.08.022
- Watling, T.C. , Ravenscroft, M.R. , Cleeton, J.P. E., Rees, I.D. and Wilkins, D.A.R. , “Development of a Particulate Filter Model for the Prediction of Backpressure: Improved Momentum Balance and Entrance and Exit Effect Equations,” SAE Int. J. Engines 10(4):1765-1794, 2017, doi:10.4271/2017-01-0974
- Torregrosa, A.J. , Serrano, J.R. , Arnau, F.J. and Piqueras, P. , “A Fluid Dynamic Model for Unsteady Compressible Flow in Wall-Flow Diesel Particulate Filters,” Enegry 36: 671-684, 2011, doi:10.1016/j.energy.2010.09.047
- Opris, C.N. and Johnson, J.H. , “A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap,” SAE Technical Paper 980545, 1998, doi:10.4271/980545
- Oxarango, L. , Schmitz, P. and Quintard, M. , “Laminar Flow in Channels with Wall Suction or Injection: A New Model to Study Multi-Channels Filtration Systems,” Chemical Engineering Science 59: 1039-1051, 2004, doi:10.1016/j.ces.2003.10.027
- Koltsakis, G. , Haralampous, O. , Depcik, C. and Ragone, J.C. , “Catalyzed Diesel Particulate Filter Modeling,” Reviews in Chemical Engineering 29(1): 1-61, 2013, doi:10.1515/revce-2012-0008
- Yang, S. , Deng, C. , Gao, Y. and He, Y. , “Diesel Particulate Filter Design Simulation: A Review” Adv. Mech. Eng. 8(3): 1-14, 2016, doi:10.1177/1687814016637328
- Depcik, C. , Spickler, B. and Gaire, A. , “Revisiting the Single Equation Pressure Drop Model for Perticulate Filters,” SAE Technical Paper 2018-01-0952, 2018, doi:10.4271/2018-01-0952
- Gong, G. , Stewart, M.L. , Zelenyuk, A. , Strzelec, A. , Viswanathan, S. , Rothamer, D.A. , Foster, D.E. and Rutland, C.J. , “Importance of Filter’s Microstructure in Dynamic Filtration Modelling of Gasoline Particulate Filters (GPFs): Inhomogeneous Porosity and Pore Size Distribution,” Chemical Engineering Journal 338: 15-26, 2018, doi:10.1016/j.cej.2018.01.006
- Korneev, S. and Onori, S. , “Transport Model of Particulate in Gasoline Particulate Filter,” ASME Proceeding, V002T26A002, 2018, doi:10.1115/DSCC2018-9160
- Masoudi, M. , “Hydrodynamics of Diesel Particulate Filters,” SAE Technical Paper 2002-01-1016, 2002, doi:10.4271/2002-01-1016
- Colebrook, C.F. , “Turbulent flow in pipes with particular reference to the transitional region between the smooth and rough pipe laws,” Journal of the Institution of Civil Engineers 11(4): 133-156, 1939, doi:10.1680/ijoti.1939.13150
- Brkić, D. , “Review of Explicit Approximations to the Colebrook Relation for Flow Friction,” Journal of Petroleum Science and Engineering 77: 34-48, 2011, doi:10.1016/j.petrol.2011.02.006
- Churchill, S.W. , “Friction-factor equation spans all fluid flow regimes,” Chemical Engineering 84: 91–102, 1977
- Jones, O.C. , “An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts,” Journal of Fluids Engineering 98(2): 173-180, 1976, doi:10.1115/1.3448250
- Brater, E.F. , King, H.W. , Lindell, J.E. and Wei, C.Y , “Handbook of Hydraulics, Seventh Edition,” (McGraw-Hill, 1996), 6.32-6.37, ISBN 0-07-007247-7
- Munson, B.R. , Young, D.F. , Okiishi, T.H. , Huebsch, W.W. , “Fundamentals of Fluid Mechanics, Sixth Edition,” (Wiley, 2009), 415-425, ISBN 978-0470-26284-9
- Sullivan, J.A. , “Fluid Power: Theory and Applications, Third Edition,” (Prentice-Hall, 1989), 82, ISBN 0-13-323080-5
- Merriman, M. , “Treatise on Hydraulics, Tenth Edition” (Wiley, 1916), 183
- Oertel, H. , Prandtl, L. , Bohle, M. , Mayes, K. , “Prandtl’s Essentials of Fluid Mechanics, Second Edition” (Springer, 2004), 164, ISBN 978-0-387-40437-0
- Kays, W.M. , “Loss Coefficient for Abrupt Changes in Flow Cross Section with Low Reynolds Number Flow in Single and Multiple Tube Systems,” Transactions of the American Society of Mechanical Engineers 72: 1067-1074, 1950
- Aleksandrova, S. , Saul, J. , Medina, H. , Garcia- Afonso, O. , Herreros, J.M. , Bevan, M. , Benjamin, S.F. , “Gasoline Particulate Filter Wall Permeability Testing,” SAE Int. J. Engines 11(5):2018, doi:10.4271/03-11-05-0039