This content is not included in your SAE MOBILUS subscription, or you are not logged in.

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

Journal Article
2019-01-2150
ISSN: 2641-9637, e-ISSN: 2641-9645
Published December 19, 2019 by SAE International in United States
On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels
Sector:
Citation: Sjöberg, M., Vuilleumier, D., Kim, N., Yokoo, N. et al., "On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(1):272-291, 2020, https://doi.org/10.4271/2019-01-2150.
Language: English

References

  1. Alger , T. , Gingrich , J. , Roberts , C. , and Mangold , B. Cooled Exhaust-Gas Recirculation for Fuel Economy and Emissions Improvement in Gasoline Engines Int. J. Engine Res. 12 3 252 264 2011 https://doi.org/10.1177/1468087411402442
  2. Takaki , D. , Tsuchida , H. , Kobara , T. , Akagi , M. et al. Study of an EGR System for Downsizing Turbocharged Gasoline Engine to Improve Fuel Economy SAE Technical Paper 2014-01-1199 2014 https://doi.org/10.4271/2014-01-1199
  3. Hwang , K. , Hwang , I. , Lee , H. , Park , H. et al. Development of New High-Efficiency Kappa 1.6L GDI Engine SAE Technical Paper 2016-01-0667 2016 https://doi.org/10.4271/2016-01-0667
  4. Matsuo , S. , Ikeda , E. , Ito , Y. , and Nishiura , H. The New Toyota Inline 4 Cylinder 1.8L ESTEC 2ZR-FXE Gasoline Engine for Hybrid Car SAE Technical Paper 2016-01-0684 2016 https://doi.org/10.4271/2016-01-0684
  5. Yamaji , K. , Tomimatsu , M. , Takagi , I. , Higuchi , A. et al. New 2.0L I4 Gasoline Direct Injection Engine with Toyota New Global Architecture Concept SAE Technical Paper 2018-01-0370 2018 https://doi.org/10.4271/2018-01-0370
  6. Vuilleumier , D. , Kim , N. , Sjöberg , M. , Yokoo , N. et al. Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study SAE Technical Paper 2018-01-1677 2018 https://doi.org/10.4271/2018-01-1677
  7. Kumano , K. and Yamaoka , S. Analysis of Knocking Suppression Effect of Cooled EGR in Turbo-Charged Gasoline Engine SAE Technical Paper 2014-01-1217 2014 https://doi.org/10.4271/2014-01-1217
  8. Szybist , J. , Wagnon , S. , Splitter , D. , Pitz , W. et al. The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines SAE Int. J. Engines 10 5 2305 2318 2017 https://doi.org/10.4271/2017-24-0061
  9. Splitter , D.A. and James , P.S. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity Energ. Fuels 28 2 1418 1431 2014 https://doi.org/10.1021/ef401574p
  10. Splitter , D.A. and James , P.S. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed Energ. Fuels 28 2 1432 1445 2014 https://doi.org/10.1021/ef401575e
  11. Bromly , J.H. , Barnes , F.J. , Mandyczewsky , R. , Edwards , T.J. , and Haynes , B.S. An Experimental Investigation of the Mutually Sensitised Oxidation of Nitric Oxide and n-butane International Symposium on Combustion 24 1 899 907 https://doi.org/10.1016/S0082-0784(06)80107-4
  12. Prabhu , S.K. , Bhat , R.K. , Miller , D.L. , and Cernansky , N.P. 1-Pentene Oxidation and Its Interaction with Nitric Oxide in the Low and Negative Temperature Coefficient Regions Combustion and Flame 104 4 377 390 1996 https://doi.org/10.1016/0010-2180(95)00134-4
  13. Ano , T.A. and Dryer , F.L. , Effect of Dimethyl Ether, NOx, and Ethane on CH 4 Oxidation: High Pressure, Intermediate-Temperature Experiments and Modeling International Symposium on Combustion 27 1 397 404 1998 https://doi.org/10.1016/S0082-0784(98)80428-1
  14. Dagaut , P. , Lecomte , F. , Chevailler , S. , and Cathonnet , M. Mutual Sensitization of the Oxidation of Nitric Oxide and Simple Fuels over an Extended Temperature Range: Experimental and Detailed Kinetic Modeling Combustion Science and Technology 148 1-6 27 57 1999 https://doi.org/10.1080/00102209908935771
  15. Faravelli , T. , Frassoldati , A. , and Ranzi , E. Kinetic Modeling of the Interactions between NO and Hydrocarbons in the Oxidation of Hydrocarbons at Low Temperatures Combustion and Flame 132 1-2 188 207 2003 https://doi.org/10.1016/S0010-2180(02)00437-6
  16. Moréac , G. , Dagaut , P. , Roesler , J.F. , and Cathonnet , M. Nitric Oxide Interactions with Hydrocarbon Oxidation in a Jet-Stirred Reactor at 10 atm Combustion and Flame 145 3 512 520 2006 https://doi.org/10.1016/j.combustflame.2006.01.002
  17. Prabhu , S. , Li , H. , Miller , D. , and Cernansky , N. The Effect of Nitric Oxide on Autoignition of a Primary Reference Fuel Blend in a Motored Engine SAE Technical Paper 932757 1993 https://doi.org/10.4271/932757
  18. Risberg , P. , Johansson , D. , Andrae , J. , Kalghatgi , G. et al. The Influence of NO on the Combustion Phasing in an HCCI Engine SAE Technical Paper 2006-01-0416 2006 https://doi.org/10.4271/2006-01-0416
  19. Sjöberg , M. and Dec , J. Influence of Fuel Autoignition Reactivity on the High-Load Limits of HCCI Engines SAE Int. J. Engines 1 1 39 58 2009 https://doi.org/10.4271/2008-01-0054
  20. Sjöberg , M. and Dec , J. Influence of EGR Quality and Unmixedness on the High-Load Limits of HCCI Engines SAE Int. J. Engines 2 1 492 510 2009 https://doi.org/10.4271/2009-01-0666
  21. Kawabata , Y. , Sakonji , T. , and Amano , T. The Effect of NOx on Knock in Spark-ignition Engines SAE Technical Paper 1999-01-0572 1999 https://doi.org/10.4271/1999-01-0572
  22. Stenlåås , O. , Gogan , A. , Egnell , R. , Sundén , B. et al. The Influence of Nitric Oxide on the Occurrence of Autoignition in the End Gas of Spark Ignition Engines SAE Technical Paper 2002-01-2699 2002 https://doi.org/10.4271/2002-01-2699
  23. Burluka , A. , Liu , K. , Sheppard , C. , Smallbone , A. et al. The Influence of Simulated Residual and NO Concentrations on Knock Onset for PRFs and Gasolines SAE Technical Paper 2004-01-2998 2004 https://doi.org/10.4271/2004-01-2998
  24. Roberts , P. and Sheppard , C. The Influence of Residual Gas NO Content on Knock Onset of Iso-Octane, PRF, TRF and ULG Mixtures in SI Engines SAE Int. J. Engines 6 4 2028 2043 2013 https://doi.org/10.4271/2013-01-9046
  25. Hoffmeyer , H. , Montefrancesco , E. , Beck , L. , Willand , J. et al. CARE - CAtalytic Reformated Exhaust Gases in Turbocharged DISI-Engines SAE Int. J. Fuels Lubr. 2 1 139 148 2009 https://doi.org/10.4271/2009-01-0503
  26. Roth , D. , Keller , P. , and Becker , M. Requirements of External EGR Systems for Dual Cam Phaser Turbo GDI Engines SAE Technical Paper 2010-01-0588 2010 https://doi.org/10.4271/2010-01-0588
  27. Lewis , A. , Akehurst , S. , Turner , J. , Patel , R. , and Popplewell , A. Observations on the Measurement and Performance Impact of Catalyzed vs. Non Catalyzed EGR on a Heavily Downsized DISI Engine SAE Int. J. Engines 7 1 458 467 2014 https://doi.org/10.4271/2014-01-1196
  28. Vuilleumier , D. and Sjöberg , M. The Use of Transient Operation to Evaluate Fuel Effects on Knock Limits Well beyond RON Conditions in Spark-Ignition Engines SAE Technical Paper 2017-01-2234 2017 https://doi.org/10.4271/2017-01-2234
  29. Zeng , W. , Sjöberg , M. , and Reuss , D.L. PIV Examination of Spray-Enhanced Swirl Flow for Combustion Stabilization in a Spray-Guided Stratified-Charge Direct-Injection Spark-Ignition Engine International Journal of Engine Research 16 3 306 322 2015
  30. Van Dam , N. , Sjöberg , M. , and Som , S. Large-eddy Simulations of Spray Variability Effects on Flow Variability in a Direct-injection Spark-ignition Engine under Non-combusting Operating Conditions SAE Technical Paper 2018-01-0196 2018 https://doi.org/10.4271/2018-01-0196
  31. Sjöberg , M. , Zeng , W. , Singleton , D. , Sanders , J. et al. Combined Effects of Multi-Pulse Transient Plasma Ignition and Intake Heating on Lean Limits of Well-Mixed E85 DISI Engine Operation SAE Int. J. Engines 7 4 1781 1801 2014 https://doi.org/10.4271/2014-01-2615
  32. Spegar , T. , Burke , D. , and Lavan , L. , Delphi's Heated Injector Technology: The Efficient Solution for Fast Ethanol Cold Starts and Reduced Emissions SAE Technical Paper 2012-01-0418 2012 https://doi.org/10.4271/2012-01-0418
  33. Heywood , J. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
  34. Sjöberg , M. and Dec , J. , An Investigation of the Relationship between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines SAE Technical Paper 2004-01-1900 2004 https://doi.org/10.4271/2004-01-1900
  35. Sjöberg , M. , Vuilleumier , D. , Yokoo , N. , and Nakata , K. Effects of Gasoline Composition and Octane Sensitivity on the Response of DISI Engine Knock to Variations of Fuel-Air Equivalence Ratio The International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines 2017 9 B307 2017 https://doi.org/10.1299/jmsesdm.2017.9.B307
  36. Pinsky , M.R. , Genc , F. , Lee , K.H. , and Delgado , E. Contamination of Hospital Compressed Air with Nitric Oxide: Unwitting Replacement Therapy Chest 111 6 1759 1763 https://doi.org/10.1378/chest.111.6.1759
  37. Sjöberg , M. , Dec , J. , and Hwang , W. Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition SAE Technical Paper 2007-01-0207 2007 https://doi.org/10.4271/2007-01-0207
  38. Kim , N. , Vuilleumier , D. , Sjöberg , M. , Yokoo , N. et al. Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents SAE Technical Paper 2019-01-1140 2019 https://doi.org/10.4271/2019-01-1140
  39. Vuilleumier , D. and Sjöberg , M. , Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine SAE Int. J. Engines 10 3 938 950 2017 https://doi.org/10.4271/2017-01-0662
  40. Splitter , D.A. , Gilliam , A. , Szybist , J. , and Ghandhi , J. Effects of Pre-Spark Heat Release on Engine Knock Limit Proc. Combustion Institute 37 4 2019 https://doi.org/10.1016/j.proci.2018.05.145

Cited By