This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements

Journal Article
2019-01-1953
ISSN: 2641-9637, e-ISSN: 2641-9645
Published June 10, 2019 by SAE International in United States
Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements
Sector:
Citation: Bedka, K., Yost, C., Nguyen, L., Strapp, J. et al., "Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and In Situ Ice Water Content Measurements," SAE Int. J. Adv. & Curr. Prac. in Mobility 2(1):35-57, 2020, https://doi.org/10.4271/2019-01-1953.
Language: English

References

  1. Lawson, R.P., Angus, L.J., and Heymsfield, A.J. , “Cloud Particle Measurements in Thunderstorm Anvils and Possible Weather Threat to Aviation,” J. Aircraft 35:113-121, 1998.
  2. Mason, J.G., Strapp, J.W., and Chow, P. , “The Ice Particle Threat to Engines in Flight,” in 44th AIAA Aerospace Sciences Meeting, Reno, Nevada, 9-12 Jan. 2006, abstract number AIAA 2006-206, 2006.
  3. Bravin, M., Strapp, J.W., and Mason, J. , “An Investigation into Location and Convective Lifecycle Trends in an Ice Crystal Icing Engine Database,” in Proceedings of the 2015 SAE International Conference on Icing of Aircraft, Engines, and Structures, 2015 .
  4. Duviver, E. , “High Altitude Icing Environment,” in Intl. Air Safety and Climate Change Conf, Cologne, Germany, 8-9 Sep. 2010, 2010, available from https://www.easa.europa.eu/conferences/iascc/doc/Workshop%201%20Presentations/Workshop1_DAY%202/1_Duvivier_EASA/IASCC_E%20Duvivier.pdf
  5. Haggerty, J., Rugg, A.. , Ratvasky, T., Strapp, W. et al. , “Characterization of High Ice Water Content Conditions that Impact Air Data System Performance,” in 19th American Meteorological Society Conference on Aviation, Range, and Aerospace Meteorology, 2019, available online at: https://ams.confex.com/ams/2019Annual/videogateway.cgi/id/50567?recordingid=50567&uniqueid=Paper350460&entry_password=453434
  6. Dezitter, F., Grandin, A., Brenguier, J.-L., Hervy, F. et al. , “HAIC - High Altitude Ice Crystals,” in 5th AIAA Atmospheric and Space Environments Conference, American Institute of Aeronautics and Astronautics, 2013, http://arc.aiaa.org/doi/abs/10.2514/6.2013-2674 (Accessed Feb. 9, 2015).
  7. Strapp, J.W., Lilie, L.E., Ratvasky, T.P., Davison, C.R. et al. , “Isokinetic TWC Evaporator Probe: Development of the IKP2 and Performance Testing for the HAIC-HIWC Darwin 2014 and Cayenne 2015 Field Campaigns,” in 8th AIAA Atmospheric and Space Environments Conference, AIAA Aviation, AIAA 2016-4059, 2016, doi:10.2514/6.2016-4059
  8. Ratvasky, T., Strapp, W., Lillie, L., Proctor, F. et al. , “Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns,” in Proceedings of the 2019 SAE International Conference on Icing of Aircraft, Engines, and Structures, 2019.
  9. Yost, C.R., Bedka, K.M., Minnis, P., Nguyen, L. et al. , “2018: A Prototype Method for Diagnosing High Ice Water Content Probability using Satellite Imager Data,” Atmos. Meas. Tech. 11:1615-1637, doi:10.5194/amt-11-1615-2018.
  10. de Laat, A., Defer, E., Delanoë, J., Dezitter, F. et al. , “Analysis of Geostationary Satellite Derived Cloud Parameters Associated with Environments with High Ice Water Content,” Atmos. Meas. Tech. 1359-1371, 2017, doi:10.5194/amt-10-1359-2017.
  11. Haggerty, J., Defer, E., De Laat, A., Bedka, K. et al. , “Detecting Clouds Associated with Jet Engine Ice Crystal Icing,” Bull. Amer. Meteor. Soc. 100:31-40, 2019, doi:10.1175/BAMS-D-17-0252.1.
  12. Schmit, T.J., Griffith, P., Gunshor, M.M., Daniels, J.M. et al. , “A Closer Look at the ABI on the GOES-R Series,” Bull. Amer. Meteor. Soc. 98:681-698, 2017, doi:10.1175/BAMS-D-15-00230.1.
  13. Harrah, S., Strickland, J., Hunt, P., Proctor, F. et al. , “Radar Detection of High Concentrations of Ice Particles-Methodology and Preliminary Flight Test Results,” in Proceedings of the 2019 SAE International Conference on Icing of Aircraft, Engines, and Structures, 2019.
  14. Goodman, S.J., Blakeslee, R.J., Koshak, W.J., Mach, D. et al. , “The GOES-R Geostationary Lightning Mapper (GLM),” Atmospheric Research 125-126:34-49, 2013.
  15. Rudlosky, S.D., Goodman, S.J., Virts, K.S., and Bruning, E.C. , “Initial Geostationary Lightning Mapper Observations,” Geophys. Res. Lett. 46:1097-1104, 2019.
  16. Bedka, K.M. and Khlopenkov, K. , “A Probabilistic Multispectral Pattern Recognition Method for Detection of Overshooting Cloud Tops using Passive Satellite Imager Observations,” J. Appl. Meteor. And Climatol. 55:1983-2005, 2016, doi:10.1175/JAMC-D-15-0249.1.
  17. Gelaro, R. and Co-Authors, MERRA-2 Overview: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim., 2017, doi:10.1175/JCLI-D-16-0758.1
  18. Rienecker, M. et al. , “MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications,” J. Climate 24:3624-3648, 2011, doi:10.1175/JCLI-D-11-00015.1.
  19. Sandmael, T., Homeyer, C.R., Bedka, K.M., Apke, J.M. et al. , “Evaluating the Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms,” J. Appl. Meteor. and Climatol., 2019, Provisionally accepted.
  20. Apke, J.M., Mecikalski, J.R., Bedka, K., McCaul, E.W. et al. , “Relationships between Deep Convection Updraft Characteristics and Satellite-Based Super Rapid Scan Mesoscale Atmospheric Motion Vector-Derived Flow,” Mon. Wea. Rev. 146:3461-3480, 2018, doi:10.1175/MWR-D-18-0119.1.
  21. Minnis, P., Sun-Mack, S., Young, D.F., Heck, P.W. et al. , “CERES Edition-2 Cloud Property Retrievals using TRMM VIRS and Terra and Aqua MODIS Data, Part I: Algorithms,” IEEE Trans. Geosci. Remote Sens. 49:4374-4400, 2011.
  22. Doelling, D., Haney, C., Bhatt, R., Scarino, B. et al. , “Geostationary Visible Imager Calibration for the CERES SYN1deg Edition 4 Product,” Remote Sens 10:288, 2018.
  23. 2 Aug. 2018 GOES-16 Animation: https://satcorps.larc.nasa.gov/field-exp/hiwc/NASA_LaRC_HIWC_detection_animation_20180802.mp4
  24. 6 Aug. 2018 GOES-16 Animation: https://satcorps.larc.nasa.gov/field-exp/hiwc/NASA_LaRC_HIWC_detection_animation_20180806.mp4
  25. 15 Aug. 2018 GOES-16 Animation: https://satcorps.larc.nasa.gov/field-exp/hiwc/NASA_LaRC_HIWC_detection_animation_20180815.mp4
  26. 16 Aug. 2018 GOES-16 Animation: https://satcorps.larc.nasa.gov/field-exp/hiwc/NASA_LaRC_HIWC_detection_animation_20180816.mp4
  27. 18 Aug. 2018 GOES-15 Animation: https://satcorps.larc.nasa.gov/field-exp/hiwc/NASA_LaRC_HIWC_detection_animation_20180818.mp4
  28. 19 Aug. 2018 GOES-15 Animation: https://satcorps.larc.nasa.gov/field-exp/hiwc/NASA_LaRC_HIWC_detection_animation_20180819.mp4
  29. 20 Aug. 2018 GOES-15 Animation: https://satcorps.larc.nasa.gov/field-exp/hiwc/NASA_LaRC_HIWC_detection_animation_20180820.mp4
  30. Bedka, K., Murillo, E.M., Homeyer, C.R., Scarino, B. et al. , “The Above-Anvil Cirrus Plume: An Important Severe Weather Indicator in Visible and Infrared Satellite Imagery,” Wea. Forecasting 33:1159-1181, 2018, doi:10.1175/WAF-D-18-0040.1.
  31. Grzych, M., Tritz, T., Mason, J., Bravin, M. et al. , “Studies of Cloud Characteristics Related to Jet Engine Ice Crystal Icing Utilizing Infrared Satellite Imagery,” in Proceedings of the 2015 SAE International Conference on Icing of Aircraft, Engines, and Structures, 2015.
  32. Aminou, D.M., Bezy, J.L., Bensi, P., Stuhlmann, R. et al. , “Meteosat Third Generation: Preliminary Imagery and Sounding Mission Concepts and Performances,” in Proc. SPIE 10567, International Conference on Space Optics - ICSO 2006, 2017, 1056706, doi:10.1117/12.2308182
  33. Strapp, J.W., Isaac, G.A.. Korolev, A., Ratvasky, T. et al. , “The High Ice Water Content (HIWC) Study of Deep Convective Clouds: Science and Technical Plan,” FAA Rep. DOT/FAA/TC-14/31, 2016, 105, available at http://www.tc.faa.gov/its/worldpac/techrpt/tc14-31.pdf.
  34. Davison, C.R., MacLeod, J.D., Strapp, J.W., and Buttsworth, D.R. , “Isokinetic Total Water Content Probe in a Naturally Aspirating Configuration: Initial Aerodynamic Design and Testing,” in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2008-0435, Jan. 10, 2008.
  35. Davison, C.R., Strapp, J.W., Lilie, L., Ratvasky, T.P. et al. , “Isokinetic TWC Evaporator Probe: Calculations and Systemic Error Analysis,” in 8th AIAA Atmospheric and Space Environments Conference , June 17, 2016, Washington, DC, AIAA-4060, 2016, doi:10.2514/6.2016-4060.
  36. Bravin, M., Strapp, J.W., Grzych, M., and Clarkson, M. , “A Continuing Investigation of Diurnal and Location Trends in an Ice Crystal Icing Engine Event Data Base,” in Proceedings of the 2019 SAE International Conference on Icing of Aircraft, Engines, and Structures, 2019.
  37. Strapp, J.W., Schwarzenboeck, A., Bedka, K., Bond, T. et al. , “An Assessment of Cloud Total Water Content and Particle Size from Flight Test Campaign Measurements in High Ice Water Content, Mixed Phase/Ice Crystal Icing Conditions: Primary In-Situ Measurements,” DOT/FAA/TC-18/1, In preparation, 2019.
  38. Protat, A., Delanoë, J., Strapp, J.W., Fontaine, E. et al. , “2015: The Measured Relationship between Ice Water Content and Cloud Radar Reflectivity in Tropical Convective Clouds,” J. Appl. Meteor. Climatol. 55:1707-1729, 2016, doi:10.1175/jamc-d-15-0248.1.
  39. Homeyer, C.R., McAuliffe, J.D., and Bedka, K.M. , “On the Development of Above-Anvil Cirrus Plumes in Extratropical convection,” J. Atmos. Sci. 74:1617-1633, 2017, doi:10.1175/JAS-D-16-0269.1.
  40. NEXRAD GridRad Homepage: http://www.gridrad.org
  41. Bruning, E.C. and MacGorman, D.R. , “Theory and Observations of Controls on Lightning Flash Size Spectra,” J. Atmos. Sci. 70:4012-4029, 2013, doi:10.1175/JAS-D-12-0289.1.
  42. Bruning, E.C., Tillier, C.E., Edgington, S.F., Rudlosky, S.D. et al. , “Meteorological Imagery for the Geostationary Lightning Mapper,” J. Geophys. Res., 2019, In Preparation.
  43. EUROCAE Publication ER-15 , Feasibility Study Weather Radar for Ice Crystals Detection, Mar. 6, 2018, also available as RTCA document AFS-1, revised Sep. 2017.

Cited By